SPPA 人工智能前沿学生论坛

人工智能前沿学生论坛

第25期

SFFAI 三维视觉之点云识别

讲者: 饶永铭(清华大学)
 刘永成(自动化所)
 主持人: 蒋正锴(自动化所)

论坛分享-II

SPPA 人工智能前沿学生论坛

▶ 分享人: <u>刘永成</u>

刘永成,中科院自动化所,模式识别国家重点实验室15级在读博士,研究兴趣 包括三维点云处理、图像分割、场景分类等。以第一作者在CVPR、ACM MM等国际 会议上发表论文3篇,国际顶级期刊上发表论文1篇。以第一完成人获国际图像分割 竞赛冠军1次,国内目标检测竞赛亚军、季军各一次。

▶ 分享题目: <u>Geometric Relation Learning in 3D Point Cloud Analysis</u>
 ▶ 报告简介:

三维点云来自距离度量空间,这意味着每一个点并非孤立存在,相邻的点形成 一个有意义的几何形状。因此,对点间几何关系进行建模非常重要。本次分享将回 顾近年来使用深度学习进行点间关系学习的经典论文,并介绍我们的CVPR 2019 Oral 工作Relation-Shape Convolutional Neural Network for Point Cloud Analysis。我们提出了 一种几何关系卷积方法,并用该卷积搭建了一个关系形状卷积神经网络RS-CNN。RS-CNN在三个主流的点云分析任务上均取得了SOTA,同时也很鲁棒。并且,RS-CNN不 仅可以从点云中学习隐含的3D形状,还能从点云的2D投影空间中推理3D形状。

Spotlight:

▶ 1.回顾点间关系学习的经典论文

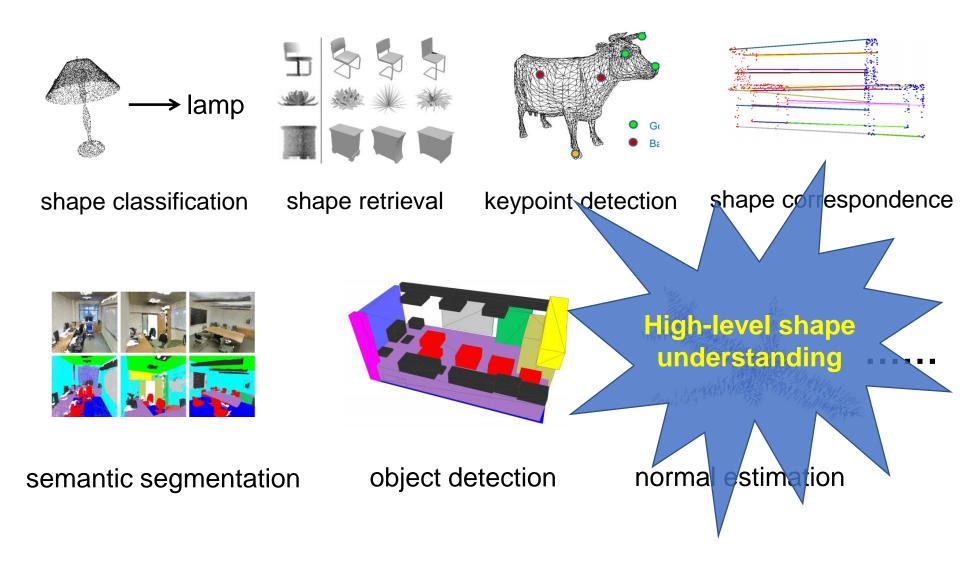
➤ 2. CVPR 2019 Oral工作: RS-CNN

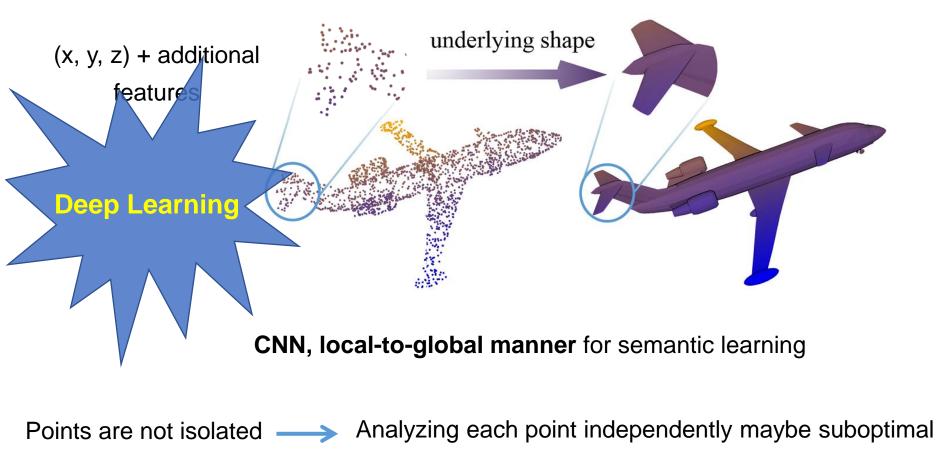
3 May 2019

§FFAI 人工智能前沿学生论坛

Geometric Relation Learning in 3D Point Cloud Analysis

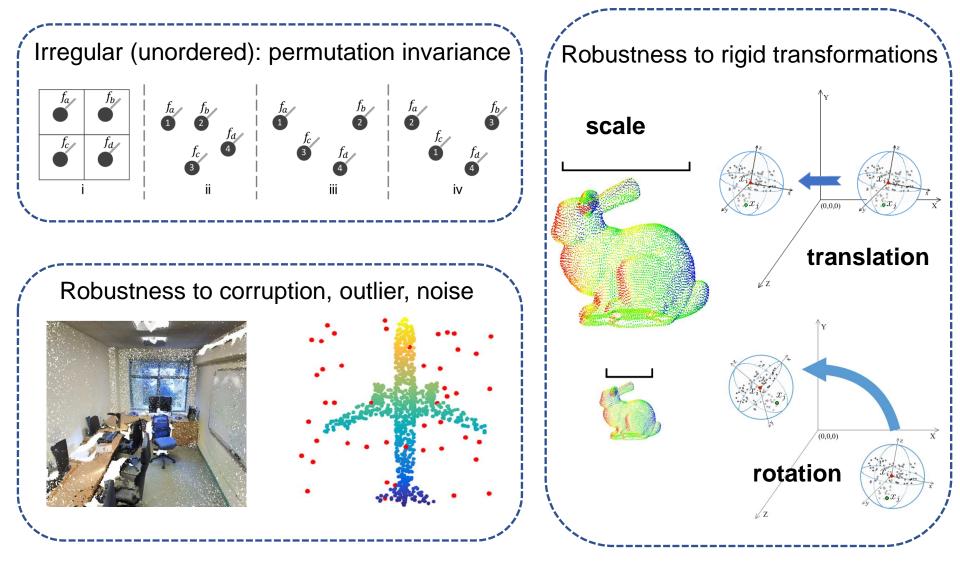
Yongcheng Liu 2019.04




Introduction **Point cloud analysis**

SPPAI 人工智能前沿学生论坛

Introduction <u>Shape understanding</u>


Nearby points form a meaningful shape _____ Abstract points' relation (interaction)

工智能前沿学生论坛

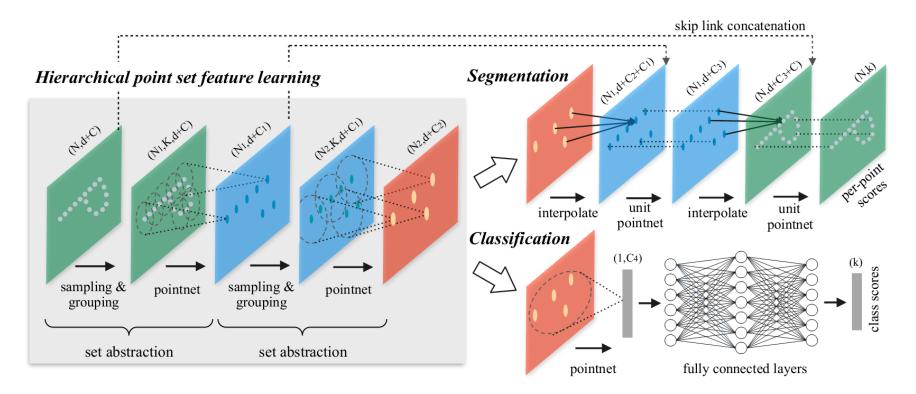
Introduction <u>Some challenges</u>

§FFAI 人工智能前沿学生论坛

SPAN 人工智能前沿学生论坛 Related Work <u>PointNet: permutation invariance</u>

Classification Network input mlp (64,128,1024) mlp(64,64)feature mlp max transform input points transform (512,256,k) \pool 1024 nx3 nx64 nx64 nx3 nx1024 shared shared global feature output scores point features output scores 64x64 3x3 T-Net T-Net transform transform nx128 nxm n x 1088 shared shared matrix matrix multiply multiply mlp (512,256,128) mlp (128,m) Segmentation Network

Shared MLP + max pool


No local patterns capturing

Qi et al. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. CVPR 2017.

3 May 2019

SPALAT智能前沿学生论坛 Related Work <u>PointNet++: local to global</u>

Sampling + Grouping + PointNet

Implicit relation modeling - maybe suboptimal

Qi et al. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. NIPS 2017.

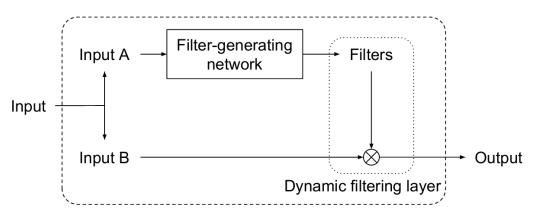
3 May 2019

Related Work <u>Relation modeling</u>

In a traditional convolutional layer, the learned filters stay fixed after training.

$$y = f(\sum \mathbf{W} * \mathbf{X} + b)$$

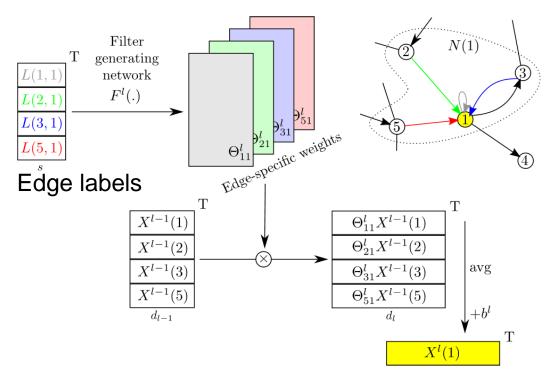
The filters in DFN are generated dynamically conditioned on an input.


$$y = f(\sum g_{\theta}(\mathbf{X}_{\mathrm{A}}) * \mathbf{X}_{\mathrm{B}} + b)$$

Model parameter: heta

Filter:
$$g_{oldsymbol{ heta}}(\mathbf{X}_{\mathrm{A}})$$

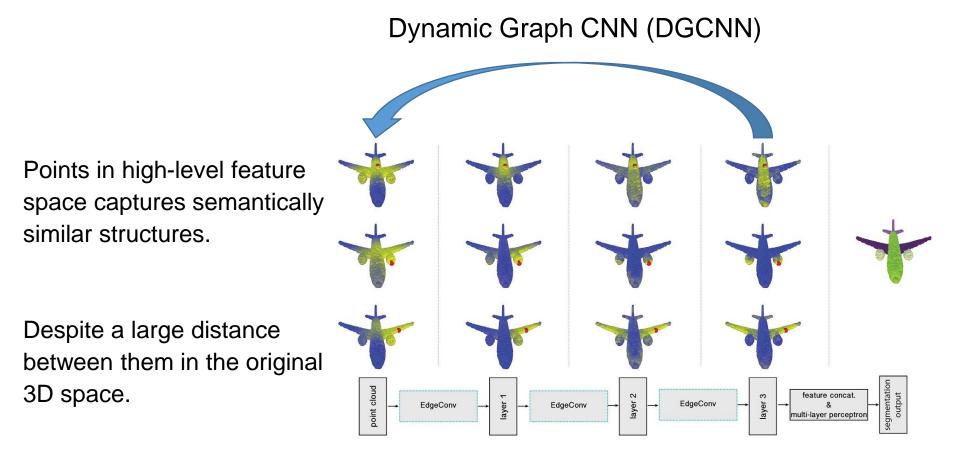
中国科学院自动化研究所



Related Work <u>Relation modeling</u>

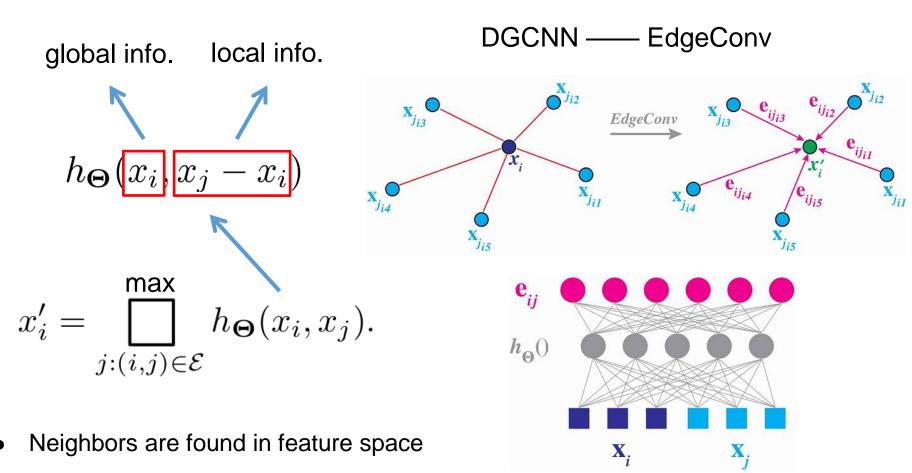
Dynamic Edge-Conditioned Filters in graph CNN

The current formulations of graph convolution do not exploit edge labels, which results in an overly homogeneous view of local graph neighborhoods.


The first to apply graph convolution to point cloud classification.

SPPA 人工智能前沿学生论坛

Related Work <u>Relation modeling</u>



Wang et al. Dynamic Graph CNN for Learning on Point Clouds. 2018.

SPPA 人工智能前沿学生论坛

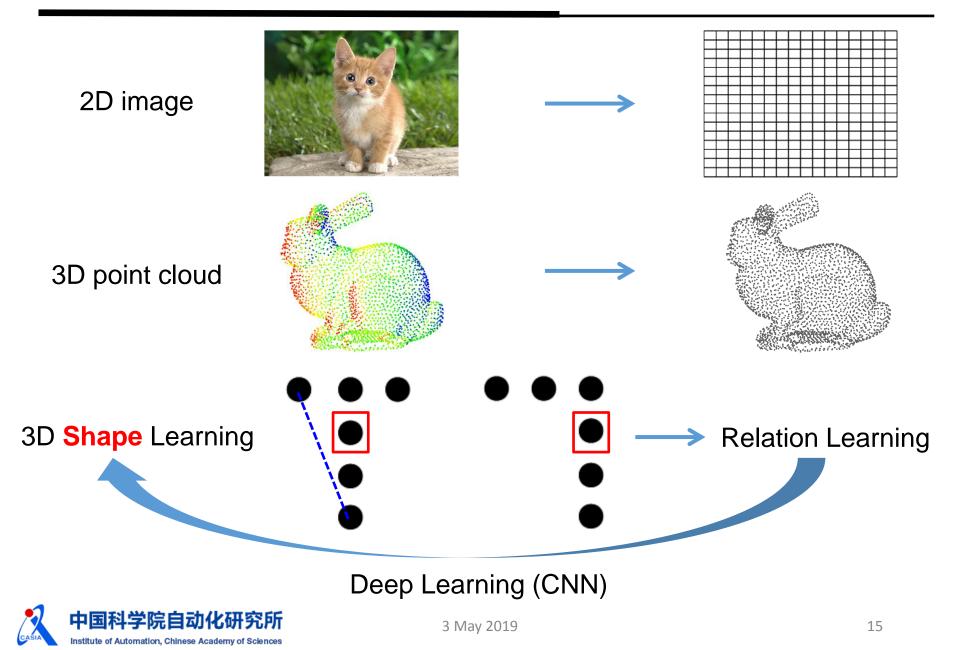
Related Work <u>Relation modeling</u>

• Learn from semantically similar structures

Wang et al. Dynamic Graph CNN for Learning on Point Clouds. 2018.

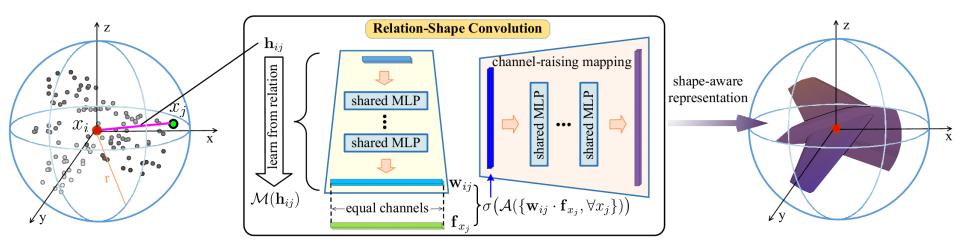
Relation-Shape Convolutional Neural Network for Point Cloud Analysis (RS-CNN)

<u>Yongcheng Liu</u>, Bin Fan, Shiming Xiang, Chunhong Pan CVPR 2019 Oral Presentation


Project Page: https://yochengliu.github.io/Relation-Shape-CNN/

RS-CNN Motivation

§FFAI 人工智能前沿学生论坛



Relation-Shape Convolution (RS-Conv)

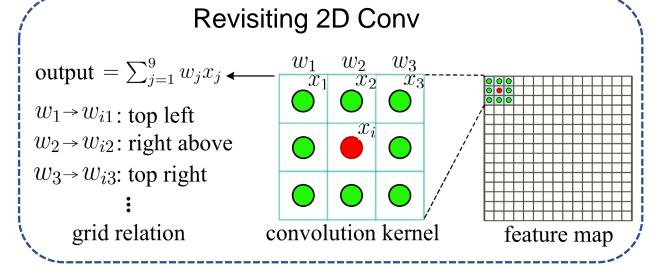
local point subset $P_{
m sub} \subset \mathbb{R}^3$ \longrightarrow spherical neighborhood: $x_i + x_i \in \mathcal{N}(x_i)$ $\mathbf{f}_{P_{\text{sub}}} = \sigma \big(\mathcal{A}(\{\mathcal{T}(\mathbf{f}_{x_i}), \forall x_j\}) \big)^1, \, d_{ij} < r \, \forall x_j \in \mathcal{N}(x_i) \qquad y = \sigma \big(\sum \mathbf{W} * \mathbf{X}\big)$ \mathcal{T} : feature transformation \mathcal{A} : feature aggregation Permutation invariance: only when A is symmetric and T is shared over each point Limitations of CNN: weight is not shared $\mathcal{T}(\mathbf{f}_{x_i}) = \mathbf{w}_i \cdot \mathbf{f}_{x_i}$ gradient only w.r.t single point - implicit $\mathcal{T}(\mathbf{f}_{x_i}) = \mathbf{w}_{ij} \cdot \mathbf{f}_{x_i} = \mathcal{M}(\mathbf{h}_{ij}) \cdot \mathbf{f}_{x_i}$ Conversion: learn from relation \mathbf{h}_{ij} : predefined geometric priors \rightarrow low-level relation $= \sigma \big(\mathcal{A}(\{\mathcal{M}(\mathbf{h}_{ij}) \cdot \mathbf{f}_{x_i}, \forall x_j\}) \big)$ \mathcal{M} : mapping function(shared MLP) high-level relation

RS-CNN <u>Method</u>

$$\mathbf{f}_{P_{\text{sub}}} = \sigma \big(\mathcal{A}(\{\mathcal{M}(\mathbf{h}_{ij}) \cdot \mathbf{f}_{x_j}, \forall x_j\}) \big)$$

high-level relation encoding + channel raising mapping

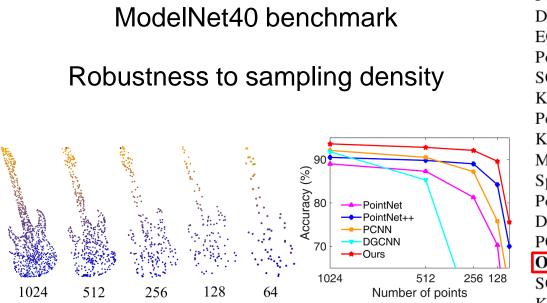
low-level relation h_{ij} : (3D Euclidean distance, $x_i - x_j$, x_i , x_j)


10 channels

3 May 2019

$$\mathbf{f}_{P_{\text{sub}}} = \sigma \big(\mathcal{A}(\{\mathcal{M}(\mathbf{h}_{ij}) \cdot \mathbf{f}_{x_j}, \forall x_j\}) \big)$$

- ✓ Permutation invariance
- Robustness to rigid transformation in Relation Learning, e.g., 3D Euclidean distance
- \checkmark Points' interaction
- ✓ Weight sharing



RS-Conv with relation learning is more general and can be applied to model 2D grid spatial relationship.

RS-CNN <u>Shape classification</u>

§FFAI 人工智能前沿学生论坛

method	input	#points	acc.
Pointwise-CNN [10]	-	1k	86.1
	xyz		
Deep Sets [48]	xyz	1k	87.1
ECC [31]	xyz	1k	87.4
PointNet [24]	xyz	1k	89.2
SCN [44]	xyz	1k	90.0
Kd-Net(depth=10) [16]	xyz	1k	90.6
PointNet++ [26]	xyz	1k	90.7
KCNet [30]	xyz	1k	91.0
MRTNet [3]	xyz	1k	91.2
Spec-GCN [38]	xyz	1k	91.5
PointCNN [21]	xyz	1k	91.7
DGCNN [41]	xyz	1k	92.2
PCNN [1]	xyz	1k	92.3
Ours	xyz	1k	93.6
SO-Net [19]	xyz	2k	90.9
Kd-Net(depth=15) [16]	xyz	32k	91.8
O-CNN [39]	xyz, nor	-	90.6
Spec-GCN [38]	xyz, nor	1k	91.8
PointNet++ [26]	xyz, nor	5k	91.9
SpiderCNN [45]	xyz, nor	5k	92.4
SO-Net [19]	xyz, nor	5k	93.4

method	input	class	instance	air	bag	cap	car	chair	ear	guitar	knife	lamp	lapto	pmotor	r mug	pistol	rocke	t skate	table
		mIoU	mIoU	plane				phone			bike				board				
Kd-Net [16]	4k	77.4	82.3	80.1	74.6	74.3	70.3	88.6	73.5	90.2	87.2	81.0	94.9	57.4	86.7	78.1	51.8	69.9	80.3
PointNet [24]	2k	80.4	83.7	83.4	78.7	82.5	74.9	89.6	73.0	91.5	85.9	80.8	95.3	65.2	93.0	81.2	57.9	72.8	80.6
RS-Net [11]	-	81.4	84.9	82.7	86.4	84.1	78.2	90.4	69.3	91.4	87.0	83.5	95.4	66.0	92.6	81.8	56.1	75.8	82.2
SCN [44]	1k	81.8	84.6	83.8	80.8	83.5	79.3	90.5	69.8	91.7	86.5	82.9	96.0	69.2	93.8	82.5	62.9	74.4	80.8
PCNN [1]	2k	81.8	85.1	82.4	80.1	85.5	79.5	90.8	73.2	91.3	86.0	85.0	95.7	73.2	94.8	83.3	51.0	75.0	81.8
SPLATNet [34]	-	82.0	84.6	81.9	83.9	88.6	79.5	90.1	73.5	91.3	84.7	84.5	96.3	69.7	95.0	81.7	59.2	70.4	81.3
KCNet [30]	2k	82.2	84.7	82.8	81.5	86.4	77.6	90.3	76.8	91.0	87.2	84.5	95.5	69.2	94.4	81.6	60.1	75.2	81.3
DGCNN [41]	2k	82.3	85.1	84.2	83.7	84.4	77.1	90.9	78.5	91.5	87.3	82.9	96.0	67.8	93.3	82.6	59.7	75.5	82.0
Ours	2k	84.0	86.2	83.5	84.8	88.8	79.6	91.2	81.1	91.6	88.4	86.0	96.0	73.7	94.1	83.4	60.5	77.7	83.6
PointNet++ [26]	2k,nor	81.9	85.1	82.4	79.0	87.7	77.3	90.8	71.8	91.0	85.9	83.7	95.3	71.6	94.1	81.3	58.7	76.4	82.6
SyncCNN [47]	mesh	82.0	84.7	81.6	81.7	81.9	75.2	90.2	74.9	93.0	86.1	84.7	95.6	66.7	92.7	81.6	60.6	82.9	82.1
SO-Net [19]	1k,nor	80.8	84.6	81.9	83.5	84.8	78.1	90.8	72.2	90.1	83.6	82.3	95.2	69.3	94.2	80.0	51.6	72.1	82.6
SpiderCNN [45]	2k,nor	82.4	85.3	83.5	81.0	87.2	77.5	90.7	76.8	91.1	87.3	83.3	95.8	70.2	93.5	82.7	59.7	75.8	82.8

class mIoU 1.7↑ instance mIoU 1.1↑

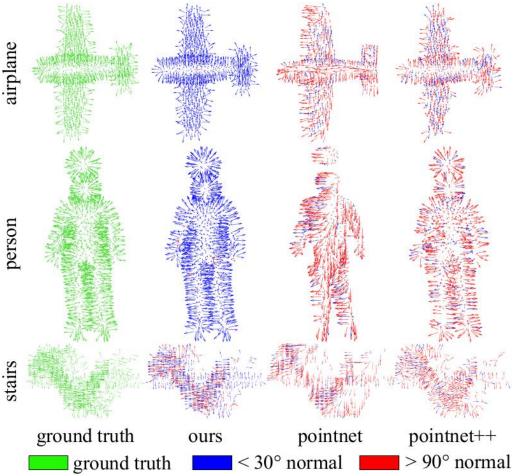
Best results over 10 categories

§FFAI 人工智能前沿学生论坛

RS-CNN <u>ShapePart Segmentation</u>

Diverse, confusing shapes

3 May 2019


SPPAI 人工智能前沿学生论坛

RS-CNN Normal estimation

SPPA 人工智能前沿学生论坛

Table 3. Normal estimation error on ModelNet40 dataset.								
dataset	method	#points	error					
ModelNet40	PointNet [1]	1k	0.47					
	PointNet++ [1]	1k	0.29					
	PCNN [1]	1k	0.19					
	Ours	1k	0.15					

less effective for some intractable shapes, such as spiral stairs and intricate plants

	model	low-level relation h	channels	acc.
$\mathbf{f}_{P_{\text{sub}}} = \sigma \big(\mathcal{A}(\{\mathcal{M}(\mathbf{h}_{ij}) \cdot \mathbf{f}_{x_i}, \forall x_j\}) \big)$	А	(3D-Ed)	1	92.5
$= F_{sub} \qquad = \left($	В	$(3D-Ed, x_i - x_j)$	4	93.0
	С	$(3D-Ed, x_i - x_j, x_i, x_j)$	10	93.6
	D	$(3D\text{-}cosd, x_i^{nor}, x_j^{nor})$	7	92.8
	Е	$(2D-Ed, x'_i - x'_j, x'_i, x'_j)$	10	≈ 92.2
xy				
XZ				
	low-le	evel relation h	channels	acc.
	(XY-l	$ Ed, x_i^{xy} - x_j^{xy}, x_i^{xy}, x_j^{xy}) $	10	92.1
	(XY-I	$\operatorname{Ed}, x_i^{\operatorname{xz}} - x_j^{\operatorname{xz}}, x_i^{\operatorname{xz}}, x_j^{\operatorname{xz}})$	10	92.1
yz	(XY-I	Ed, $x_i^{xz} - x_j^{xz}, x_i^{xz}, x_j^{xz}$) Ed, $x_i^{yz} - x_j^{yz}, x_i^{yz}, x_j^{yz}$)	10	92.2
		of above three views		92.5

RS-CNN Model analysis

Institute of Automation, Chinese Academy of Sciences

Robustness to point permutation and rigid transformation

relation: 3D		method	acc.	perm.	+0.2	-0.2	90°	180°
		PointNet [24]	88.7	88.7	70.8	70.6	42.5	38.6
Euclidean distance		PointNet++ [26]	88.2†	88.2	88.2	88.2	47.9	39.7
		Ours	90.3 [†]	90.3	90.3	90.3	90.3	90.3
$\mathbf{f}_{P_{sub}} = \sigmaig(\mathcal{A}(\{.$	$\mathcal{M}(\mathbf{h}_{ij})$ ·	$\mathbf{f}_{x_j}, \forall x_j \}) \big)$	1 st layer 512 points		^d layer 3 points		ayer points	2 nd layer 128 points
Model comple				τ ·				Care and a second s
method	#params	#FLOPs/sample	HILE IN		(7. C. C.			1.97-32
PointNet [24]	3.50M	440M	Nor St	eiter a	2.		ALC: NO	
PointNet++ [21]	1.48M	1684M	8	45			Silva-	
PCNN [21] Ours	8.20M 1.41M	294M 295M						
			P		- Malang	6 5	and the second s	A
🥂 中国科学院自	动化研究所	i 3	May 2019	low respons	se e		high re	24

Relation-Shape Convolutional Neural Network for Point Cloud Analysis

We did a little exploration in **Geometric Relation Learning** for point cloud analysis.

Speaker : Yongcheng Liu

