## Deep Learning (CNN) in 3D Point Cloud Processing

Yongcheng Liu 2019.04

#### Introduction

# Introduction <u>tasks</u>



object detection

semantic segmentation

normal estimation

# Introduction <u>datasets</u>



Mo et al. PartNet: A Large-scale Benchmark for Fine-grained and Hierarchical Part-level 3D Object Understanding. CVPR 2019. Yi et al. A scalable active framework for region annotation in 3D shape collections. TOG 2016. Wu et al. 3D ShapeNets: A Deep Representation for Volumetric Shapes. CVPR 2015.

# Introduction <u>datasets</u>



Stanford 3D indoor scene: 8k



ScanNet: seg + det



Semantic 3D: 4 billion in total



. . . . . .

KITTI: det

Dai et al. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR 2017. Armeni et al. 3d semantic parsing of large-scale indoor spaces. CVPR 2016.

Hackel et al. Semantic3d. net: A new large-scale point cloud classification benchmark. ISPRS 2017.

# Introduction <u>some challenges</u>



#### Introduction **3D** representations



multi-view images + 2D CNN





point cloud + DL (CNN) ?

image depth + CNN

#### **Related work – PointNet family**

### Related Work **PointNet: permutation invariance**

Classification Network



Shared MLP + max pool (symmetric function)

No local patterns capturing

Qi et al. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. CVPR 2017.

### Related Work PointNet++: local to global

![](_page_9_Figure_1.jpeg)

#### Sampling + Grouping + PointNet

Qi et al. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. NIPS 2017.

## **Related work – regularization**

### Related Work <u>SEGCloud: voxelization</u>

![](_page_11_Figure_1.jpeg)

Tchapmi et al. SEGCloud: Semantic Segmentation of 3D Point Clouds. I3DV 2017.

#### Related Work SPLATNet: high-dimensional lattice

![](_page_12_Figure_1.jpeg)

Su et al. SPLATNet: Sparse Lattice Networks for Point Cloud Processing. CVPR 2018.

#### Related Work <u>Pointwise CNN: k-NN binned kernel</u>

![](_page_13_Figure_1.jpeg)

$$x_i^{\ell} = \sum_k w_k \frac{1}{\mid \Omega_i(k) \mid} \sum_{p_j \in \Omega_i(k)} x_j^{\ell-1}$$

Hua et al. Pointwise Convolutional Neural Networks. CVPR 2018.

#### Related Work SO-Net: Self-Organizing Map (SOM)

![](_page_14_Figure_1.jpeg)

$$\begin{aligned} s_{ik} &= \text{kNN}(p_i \mid s_j, \ j = 0, \cdots, M-1). \\ p_{ik} &= p_i - s_{ik}. \\ p_{ik}^{l+1} &= \phi(W^l p_{ik}^l + b^l). \\ s_j^0 &= \max(\{p_{ik}^l, \forall s_{ik} = s_j\}). \end{aligned}$$

Li et al. SO-Net: Self-Organizing Network for Point Cloud Analysis. CVPR 2018.

0.75 0.50 0.25 0.00 -0.25 -0.50 -0.50

0.0 0.1 0.0 -0.1 -0.2 .00 -0.3

### Related Work PointCNN: X-transformation

In this paper, we propose to learn a  $K \times K \mathcal{X}$ -transformation for the coordinates of K input points  $(p_1, p_2, ..., p_K)$ , with a multilayer perceptron [39], i.e.,  $\mathcal{X} = MLP(p_1, p_2, ..., p_K)$ . Our aim is to use it to simultaneously weight and permute the input features, and subsequently apply a typical convolution on the transformed features. We refer to this process as  $\mathcal{X}$ -Conv, and it is the basic

ALGORITHM 1: X-Conv Operator

| Input : $\mathbf{K}, p, \mathbf{P}, \mathbf{F}$                                        |                                                                                                                             |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| <b>Output:</b> $\mathbf{F}_p$                                                          | $\triangleright$ Features "projected", or "aggregated", into representative point $p$                                       |
| 1: $\mathbf{P}' \leftarrow \mathbf{P} - p$                                             | $\triangleright$ Move <b>P</b> to local coordinate system of $p$                                                            |
| 2: $\mathbf{F}_{\delta} \leftarrow MLP_{\delta}(\mathbf{P}')$                          | $\triangleright$ Individually lift each point into $C_{\delta}$ dimensional space                                           |
| 3: $\mathbf{F}_* \leftarrow [\mathbf{F}_{\delta}, \mathbf{F}]$                         | $\triangleright$ Concatenate $\mathbf{F}_{\delta}$ and $\mathbf{F}, \mathbf{F}_*$ is a $K \times (C_{\delta} + C_1)$ matrix |
| 4: $\mathcal{X} \leftarrow MLP(\mathbf{P}')$                                           | $\triangleright$ Learn the $K \times K \mathcal{X}$ -transformation matrix                                                  |
| 5: $\mathbf{F}_{\mathcal{X}} \leftarrow \mathcal{X} \times \mathbf{F}_{*}$             | $\triangleright$ Weight and permute $\mathbf{F}_*$ with the learnt $\mathcal{X}$                                            |
| 6: $\mathbf{F}_p \leftarrow \operatorname{Conv}(\mathbf{K}, \mathbf{F}_{\mathcal{X}})$ | $\triangleright$ Finally, typical convolution between K and $\mathbf{F}_{\mathcal{X}}$                                      |

## Related Work **PointSift: SIFT-like network**

![](_page_16_Figure_1.jpeg)

Figure 4: Illustration of the details in Orientation-encoding Point Convolutional layer. (a): point clouds in 3D space. (b) neighbors in eight directions. (c) three stages convolution combines all the features.

#### SIFT :

- orientation-encoding
- scale-awareness (shortcut

connections)

![](_page_16_Figure_7.jpeg)

Jiang et al. PointSIFT: A SIFT-like Network Module for 3D Point Cloud Semantic Segmentation. arXiv 2018.

#### **Related work – robustness to rigid transformation**

Normalization:

- ✓ Translation
- ✓ Scale
- x Rotation

![](_page_18_Picture_5.jpeg)

#### **Related Work** SFCNN: Spherical Fractal CNN

![](_page_19_Figure_1.jpeg)

Cohen et al. Spherical CNNs. ICLR 2018.

Rao et al. Spherical Fractal Convolution Neural Networks for Point Cloud Recognition. CVPR 2019.

#### **Related work – relation modeling**

# Related Work <u>DGCNN</u>

Dynamic Graph CNN (DGCNN)

Points in high-level feature space captures semantically similar structures.

Despite a large distance between them in the original 3D space.

![](_page_21_Figure_4.jpeg)

Wang et al. Dynamic Graph CNN for Learning on Point Clouds. 2018.

# Related Work <u>DGCNN</u>

![](_page_22_Figure_1.jpeg)

# Related Work <u>self-attention</u>

- Relation modeling: self-attention
- Gumbel Subset Sampling VS. Farthest Point Sampling
  - permutation-invariant
  - high-dimension embedding space
  - differentiable

![](_page_23_Figure_6.jpeg)

## Related Work <u>self-attention</u>

![](_page_24_Figure_1.jpeg)

Embedding: PointNet $X'_p = \{(x_p, x_i - x_p) | i \neq p\}.$ 

Self-attention:

group convolution + channel shuffle + pre-activation

Yang et al. Modeling Point Clouds with Self-Attention and Gumbel Subset Sampling. CVPR 2019.

# Related Work self-attention

$$X_i \in \mathbb{R}^{N_i \times c}$$
$$X_{i+1} \in \mathbb{R}^{N_{i+1} \times c} \subseteq X_i$$

Gumbel Subset Sampling:

 $y = softmax(wX_i^T) \cdot X_i, \quad w \in \mathbb{R}^c.$   $\downarrow \text{ discrete reparameterization trick}$   $y_{gumbel} = gumbel\_softmax(wX_i^T) \cdot X_i, \quad w \in \mathbb{R}^c.$   $\downarrow \text{ multiple point version}$   $GSS(X_i) = gumbel\_softmax(WX_i^T) \cdot X_i, \quad W \in \mathbb{R}^{N_{i+1} \times c}.$ 

![](_page_25_Figure_4.jpeg)

Maximilian et al. Attention-based deep multiple instance learning. ICML 2018. Yang et al. Modeling Point Clouds with Self-Attention and Gumbel Subset Sampling. CVPR 2019.

#### **Related work – convolution on point cloud**

#### Related Work Kernel Point Convolution

$$(\mathcal{F} * g)(x) = \sum_{x_i \in \mathcal{N}_x} g(x_i - x) f_i$$

$$y_i = x_i - x$$

$$\mathcal{B}_r^3 = \{y \in \mathbb{R}^3 \mid ||y|| \le r\}$$

$$g(y_i) = \sum_{k < K} h(y_i, \tilde{x}_k) W_k$$
kernel points:  $\{\tilde{x}_k \mid k < K\} \subset \mathcal{B}_r^3$ 

$$\{W_k \mid k < K\} \subset \mathbb{R}^{D_{in} \times D_{out}}$$

$$h(y_i, \tilde{x}_k) = \max\left(0, 1 - \frac{||y_i - \tilde{x}_k||}{\sigma}\right)$$

Hugues et al. KPConv: Flexible and Deformable Convolution for Point Clouds. arXiv 2019.

#### Related Work Kernel Point Convolution

repulsive potential:

$$\forall x \in \mathbb{R}^3, \quad E_k^{rep}(x) = \frac{1}{\|x - \widetilde{x}_k\|}$$

attractive potential:

$$\forall x \in \mathbb{R}^3, \quad E^{att}(x) = \|x\|^2$$

$$E^{tot} = \sum_{k < K} \left( E^{att}(\widetilde{x}_k) + \sum_{l \neq k} E^{rep}_k(\widetilde{x}_l) \right)$$

![](_page_28_Figure_6.jpeg)

Hugues et al. KPConv: Flexible and Deformable Convolution for Point Clouds. arXiv 2019.

#### Related Work Kernel Point Convolution

**Rigid:** 
$$(\mathcal{F} * g)(x) = \sum_{x_i \in \mathcal{N}_x} g(x_i - x) f_i$$
  
 $g(y_i) = \sum_{k < K} h(y_i, \tilde{x}_k) W_k$ 

Deformable: fit the local geometry

$$(\mathcal{F} * g)(x) = \sum_{x_i \in \mathcal{N}_x} g_{deform}(x - x_i, \Delta(x)) f_i$$

$$g_{deform}(y_i, \Delta(x)) = \sum_{k < K} h(y_i, \tilde{x}_k + \Delta_k(x)) W_k$$

![](_page_29_Figure_5.jpeg)

Hugues et al. KPConv: Flexible and Deformable Convolution for Point Clouds. arXiv 2019.

#### **Github: awesome-point-cloud-analysis**

#### - Recent papers (from 2017)

![](_page_30_Picture_2.jpeg)

#### Keywords

ලා

| dat. | : dataset 🛛        | cls.:classification   r      | e1. : retrieval | seg. : segmentation               |
|------|--------------------|------------------------------|-----------------|-----------------------------------|
| det. | : detection        | tra.:tracking   pos          | : pose          | dep.:depth                        |
| reg. | : registration     | rec. : reconstruction        | aut.:auto       | onomous driving                   |
| oth. | : other, including | a normal-related, correspond | ence, mapping   | , matching, alignment, compressio |

#### 2017

- [CVPR] PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. [tensorflow][pytorch] [ cls.
   seg. det. ]
- [CVPR] Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs. [ cls. ]
- [CVPR] SyncSpecCNN: Synchronized Spectral CNN for 3D Shape Segmentation. [torch] [ seg. oth. ]
- [CVPR] ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. [project][git] [ dat. cls. rel. seg. oth. ]
- [CVPR] Scalable Surface Reconstruction from Point Clouds with Extreme Scale and Density Diversity. [ oth. ]
- [CVPR] Efficient Global Point Cloud Alignment using Bayesian Nonparametric Mixtures. [code] [ oth. ]
- [CVPR] Discriminative Optimization: Theory and Applications to Point Cloud Registration. [ reg. ]
- [CVPR] 3D Point Cloud Registration for Localization using a Deep Neural Network Auto-Encoder. [git] [ reg. ]

# Relation-Shape Convolutional Neural Network for Point Cloud Analysis (RS-CNN)

<u>Yongcheng Liu</u>, Bin Fan, Shiming Xiang, Chunhong Pan CVPR 2019 Oral Presentation

Project Page: https://yochengliu.github.io/Relation-Shape-CNN/

![](_page_31_Picture_3.jpeg)

# **RS-CNN** <u>Motivation</u>

![](_page_32_Figure_1.jpeg)

Deep Learning (CNN)

Relation-Shape Convolution (RS-Conv)

local point subset  $P_{sub} \subset \mathbb{R}^3 \longrightarrow$  spherical neighborhood:  $x_i + x_j \in \mathcal{N}(x_i)$   $\mathbf{f}_{P_{sub}} = \sigma \left( \mathcal{A}(\{\mathcal{T}(\mathbf{f}_{x_j}), \forall x_j\}) \right)^1, \ d_{ij} < r \ \forall x_j \in \mathcal{N}(x_i) \qquad y = \sigma(\sum \mathbf{W} * \mathbf{X})$  $\mathcal{T}$ : feature transformation  $\mathcal{A}$ : feature aggregation

- Permutation invariance: only when A is symmetric and T is shared over each point
- Limitations of CNN: weight is not shared  $\mathcal{T}(\mathbf{f}_{x_j})$  gradient only w.r.t single point implicit
  - $\mathcal{T}(\mathbf{f}_{x_j}) \,=\, \mathbf{w}_j \,\cdot\, \mathbf{f}_{x_j}$

• Conversion: learn from relation  $\mathcal{T}(\mathbf{f}_{x_j}) = \mathbf{w}_{ij} \cdot \mathbf{f}_{x_j} = \mathcal{M}(\mathbf{h}_{ij}) \cdot \mathbf{f}_{x_j}$ 

 $\mathbf{h}_{ij}: \text{predefined geometric priors} \rightarrow \text{low-level relation}$  $\mathbf{f}_{P_{\text{sub}}} = \sigma \left( \mathcal{A}(\{\mathcal{M}(\mathbf{h}_{ij}) \cdot \mathbf{f}_{x_j}, \forall x_j\}) \right) \quad \mathcal{M}: \text{mapping function}(\text{shared MLP}) \rightarrow \text{high-level relation}$ 

# RS-CNN <u>Method</u>

![](_page_34_Figure_1.jpeg)

high-level relation encoding + channel raising mapping

low-level relation  $h_{ij}$ : (3D Euclidean distance,  $x_i - x_j$ ,  $x_i$ ,  $x_j$ ) 10 channels

# **RS-CNN** <u>*RS-Conv: Properties*</u>

$$\mathbf{f}_{P_{\text{sub}}} = \sigma \big( \mathcal{A}(\{\mathcal{M}(\mathbf{h}_{ij}) \cdot \mathbf{f}_{x_j}, \forall x_j\}) \big)$$

- ✓ Permutation invariance
- ✓ Robustness to rigid transformation in Relation Learning, e.g., 3D Euclidean distance
- ✓ Points' interaction

![](_page_35_Figure_5.jpeg)

RS-Conv with relation learning is more general and can be applied to model 2D grid spatial relationship.

# RS-CNN <u>RS-CNN</u>

![](_page_36_Figure_1.jpeg)

Farthest Point Sampling + Sphere Neighborhood + RS-Conv

# **RS-CNN** <u>Shape classification</u>

![](_page_37_Figure_1.jpeg)

| method                | input                            | #points | acc. |
|-----------------------|----------------------------------|---------|------|
| Pointwise-CNN [10]    | xyz                              | 1k      | 86.1 |
| Deep Sets [48]        | xyz                              | 1k      | 87.1 |
| ECC [31]              | xyz                              | 1k      | 87.4 |
| PointNet [24]         | xyz                              | 1k      | 89.2 |
| SCN [44]              | xyz                              | 1k      | 90.0 |
| Kd-Net(depth=10) [16] | xyz                              | 1k      | 90.6 |
| PointNet++ [26]       | xyz                              | 1k      | 90.7 |
| KCNet [30]            | xyz                              | 1k      | 91.0 |
| MRTNet [3]            | xyz                              | 1k      | 91.2 |
| Spec-GCN [38]         | xyz                              | 1k      | 91.5 |
| PointCNN [21]         | xyz                              | 1k      | 91.7 |
| DGCNN [41]            | xyz                              | 1k      | 92.2 |
| PCNN [1]              | xyz                              | 1k      | 92.3 |
| Ours                  | $\mathbf{x}\mathbf{y}\mathbf{z}$ | 1k      | 93.6 |
| SO-Net [19]           | xyz                              | 2k      | 90.9 |
| Kd-Net(depth=15) [16] | xyz                              | 32k     | 91.8 |
| O-CNN [39]            | xyz, nor                         | -       | 90.6 |
| Spec-GCN [38]         | xyz, nor                         | 1k      | 91.8 |
| PointNet++ [26]       | xyz, nor                         | 5k      | 91.9 |
| SpiderCNN [45]        | xyz, nor                         | 5k      | 92.4 |
| SO-Net [19]           | xyz, nor                         | 5k      | 93.4 |

| method          | input  | class | instance | air   | bag  | cap  | car  | chair | ear   | guitar | knife | lamp | laptoj | motor | r mug | pistol | rocke | t skate | table |
|-----------------|--------|-------|----------|-------|------|------|------|-------|-------|--------|-------|------|--------|-------|-------|--------|-------|---------|-------|
|                 |        | mIoU  | mIoU     | plane |      |      |      |       | phone | e      |       |      |        | bike  |       |        |       | board   |       |
| Kd-Net [16]     | 4k     | 77.4  | 82.3     | 80.1  | 74.6 | 74.3 | 70.3 | 88.6  | 73.5  | 90.2   | 87.2  | 81.0 | 94.9   | 57.4  | 86.7  | 78.1   | 51.8  | 69.9    | 80.3  |
| PointNet [24]   | 2k     | 80.4  | 83.7     | 83.4  | 78.7 | 82.5 | 74.9 | 89.6  | 73.0  | 91.5   | 85.9  | 80.8 | 95.3   | 65.2  | 93.0  | 81.2   | 57.9  | 72.8    | 80.6  |
| RS-Net [11]     | -      | 81.4  | 84.9     | 82.7  | 86.4 | 84.1 | 78.2 | 90.4  | 69.3  | 91.4   | 87.0  | 83.5 | 95.4   | 66.0  | 92.6  | 81.8   | 56.1  | 75.8    | 82.2  |
| SCN [44]        | 1k     | 81.8  | 84.6     | 83.8  | 80.8 | 83.5 | 79.3 | 90.5  | 69.8  | 91.7   | 86.5  | 82.9 | 96.0   | 69.2  | 93.8  | 82.5   | 62.9  | 74.4    | 80.8  |
| PCNN [1]        | 2k     | 81.8  | 85.1     | 82.4  | 80.1 | 85.5 | 79.5 | 90.8  | 73.2  | 91.3   | 86.0  | 85.0 | 95.7   | 73.2  | 94.8  | 83.3   | 51.0  | 75.0    | 81.8  |
| SPLATNet [34]   | -      | 82.0  | 84.6     | 81.9  | 83.9 | 88.6 | 79.5 | 90.1  | 73.5  | 91.3   | 84.7  | 84.5 | 96.3   | 69.7  | 95.0  | 81.7   | 59.2  | 70.4    | 81.3  |
| KCNet [30]      | 2k     | 82.2  | 84.7     | 82.8  | 81.5 | 86.4 | 77.6 | 90.3  | 76.8  | 91.0   | 87.2  | 84.5 | 95.5   | 69.2  | 94.4  | 81.6   | 60.1  | 75.2    | 81.3  |
| DGCNN [41]      | 2k     | 82.3  | 85.1     | 84.2  | 83.7 | 84.4 | 77.1 | 90.9  | 78.5  | 91.5   | 87.3  | 82.9 | 96.0   | 67.8  | 93.3  | 82.6   | 59.7  | 75.5    | 82.0  |
| Ours            | 2k     | 84.0  | 86.2     | 83.5  | 84.8 | 88.8 | 79.6 | 91.2  | 81.1  | 91.6   | 88.4  | 86.0 | 96.0   | 73.7  | 94.1  | 83.4   | 60.5  | 77.7    | 83.6  |
| PointNet++ [26] | 2k,nor | 81.9  | 85.1     | 82.4  | 79.0 | 87.7 | 77.3 | 90.8  | 71.8  | 91.0   | 85.9  | 83.7 | 95.3   | 71.6  | 94.1  | 81.3   | 58.7  | 76.4    | 82.6  |
| SyncCNN [47]    | mesh   | 82.0  | 84.7     | 81.6  | 81.7 | 81.9 | 75.2 | 90.2  | 74.9  | 93.0   | 86.1  | 84.7 | 95.6   | 66.7  | 92.7  | 81.6   | 60.6  | 82.9    | 82.1  |
| SO-Net [19]     | 1k,nor | 80.8  | 84.6     | 81.9  | 83.5 | 84.8 | 78.1 | 90.8  | 72.2  | 90.1   | 83.6  | 82.3 | 95.2   | 69.3  | 94.2  | 80.0   | 51.6  | 72.1    | 82.6  |
| SpiderCNN [45]  | 2k,nor | 82.4  | 85.3     | 83.5  | 81.0 | 87.2 | 77.5 | 90.7  | 76.8  | 91.1   | 87.3  | 83.3 | 95.8   | 70.2  | 93.5  | 82.7   | 59.7  | 75.8    | 82.8  |

class mIoU 1.7↑ instance mIoU 1.1↑

Best results over 10 categories

### **RS-CNN** <u>ShapePart Segmentation</u>

![](_page_39_Picture_1.jpeg)

Diverse, confusing shapes

# **RS-CNN** *Normal estimation*

| Table 3 | 8. Normal | estimation | error | on N | Aode | 1N | et40 | dataset. |
|---------|-----------|------------|-------|------|------|----|------|----------|
| 1       |           |            | 1     |      |      | •  |      |          |

|            | Ours           | 1k      | 0.15  |
|------------|----------------|---------|-------|
|            | PCNN [1]       | 1k      | 0.19  |
|            | PointNet++ [1] | 1k      | 0.29  |
| ModelNet40 | PointNet [1]   | 1k      | 0.47  |
| dataset    | method         | #points | error |

less effective for some intractable shapes, such as spiral stairs and intricate plants

![](_page_40_Figure_4.jpeg)

# **RS-CNN** <u>Geometric priors</u>

$$\mathbf{f}_{P_{\text{sub}}} = \sigma \big( \mathcal{A}(\{\mathcal{M}(\mathbf{h}_{ij}) \cdot \mathbf{f}_{x_j}, \forall x_j\}) \big)$$

![](_page_41_Figure_2.jpeg)

| model | low-level relation h                     | channels | acc.           |
|-------|------------------------------------------|----------|----------------|
| А     | (3D-Ed)                                  | 1        | 92.5           |
| В     | (3D-Ed, $x_i - x_j$ )                    | 4        | 93.0           |
| С     | $(3D-Ed, x_i - x_j, x_i, x_j)$           | 10       | 93.6           |
| D     | $(3D\text{-}cosd, x_i^{nor}, x_j^{nor})$ | 7        | 92.8           |
| E     | (2D-Ed, $x'_i - x'_j, x'_i, x'_j$ )      | 10       | $\approx 92.2$ |

| low-level relation h                                                            | channels | acc. |
|---------------------------------------------------------------------------------|----------|------|
| (XY-Ed, $x_i^{xy} - x_j^{xy}, x_i^{xy}, x_j^{xy}$ )                             | 10       | 92.1 |
| (XY-Ed, $x_i^{\text{xz}} - x_j^{\text{xz}}, x_i^{\text{xz}}, x_j^{\text{xz}}$ ) | 10       | 92.1 |
| (XY-Ed, $x_i^{yz} - x_j^{yz}, x_i^{yz}, x_j^{yz}$ )                             | 10       | 92.2 |
| fusion of above three views                                                     |          | 92.5 |

# **RS-CNN** *Model analysis*

#### Robustness to point permutation and rigid transformation

|                                                                   | _            | method                         | acc.          | perm.                              | +0.2  | -0.2                                | 90°                                 | 180°         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------|--------------|--------------------------------|---------------|------------------------------------|-------|-------------------------------------|-------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| relation: 3D                                                      |              | PointNet [24]                  | 88.7          | 88.7                               | 70.8  | 70.6                                | 42.5                                | 38.6         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Fuclidean distanc                                                 | <u>م</u>     | PointNet++ [26]                | $88.2^{+}$    | 88.2                               | 88.2  | 88.2                                | 47.9                                | 39.7         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                   |              | Ours                           | <b>90.3</b> † | 90.3                               | 90.3  | 90.3                                | 90.3                                | 90.3         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\mathbf{f} = -\sigma(A)$                                         |              | 1 <sup>st</sup> lay<br>512 poi | er<br>ints    | 2 <sup>nd</sup> layer<br>128 point | s     | 1 <sup>st</sup> layer<br>512 points | 2 <sup>nd</sup> layer<br>128 points |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\mathbf{I}_{P_{\mathrm{sub}}} = O\left(\mathcal{A}(\{)\}\right)$ | )            | -                              | 6             | ST DE                              |       | 699                                 |                                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Model complexity                                                  |              |                                |               |                                    |       | 13.5                                |                                     |              | Contract of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| method                                                            | #params      | #FLOPs/sample                  | e             | 122.435                            |       |                                     |                                     | ALL DE LEVEL |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PointNet [24]                                                     | 3.50M        | 440M                           |               | and the second second              |       | 171. X.                             | •                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PointNet++ [21]                                                   | 1.48M        | 1684M                          |               | * 1                                | - A   | . An                                |                                     |              | and the second sec |
| PCNN [21]                                                         | 8.20M        | <b>294M</b>                    |               |                                    | 5/97. | Entry.                              |                                     | -            | Salla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ours                                                              | <b>1.41M</b> | 295M                           |               |                                    |       |                                     |                                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                   |              |                                |               | - market                           | . 64  |                                     | 14                                  | Ser Street   | 64: · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                   |              |                                |               | 5                                  |       |                                     |                                     | 1            | Sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                   |              |                                |               |                                    |       |                                     |                                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

low response

high response

# Relation-Shape Convolutional Neural Network for Point Cloud Analysis

We propose a learn-from-relation convolution operator, which extends 2D CNN to irregular configuration for point cloud analysis.

# Thanks for your attention !