

深度学习在3D点云处理中的探索

刘永成

中科院自动化所

模式识别国家重点实验室

2019.08

Introduction **3D representations**

multi-view images + 2D CNN

image depth + CNN

point cloud + DL (GNN & CNN) ?

Introduction *point cloud*

Advantages

- ✓ raw sensor data, e.g., Lidar
- \checkmark simple representation: N * (x, y, z, color, normal...)
- ✓ better 3D shape capturing

Why emerging?

- ✓ autonomous driving
- ✓ AR & VR
- ✓ robot manipulation
- ✓ Geomatics
- ✓ 3D face & medical
- $\checkmark\,$ AI-assisted shape design in 3D game and animation, etc.
- ✓ <u>open problem, flexible</u>

Introduction <u>tasks</u>

Introduction <u>datasets</u>

Introduction <u>datasets</u>

Stanford 3D indoor scene: 8k [4] Armeni et al. CVPR 2016.

ScanNet: seg + det [6] Dai et al. CVPR 2017.

Semantic 3D: 4 billion in total

[5] Hackel et al. ISPRS 2017.

KITTI, nuScenes: det

.....

Introduction <u>some challenges</u>

Outline

Related Work **PointNet family**

Classification Network

Related Work **PointNet family**

Related Work regular processing

[7] Zhou et al. VoxelNet. CVPR 2018.

[8] Su et al. SPLATNet. CVPR 2018.

lattice + bilateral convolution + hash index

[9] Kiefel et al. Permutohedral Lattice CNNs. ICLR 2015.[10] Jampani et al. Bilateral Neural Networks. CVPR 2016.

[11] Atzmon et al. PCNN. SIGGRAPH 2018. "without any discretization or approximation"

Related Work regular processing

[12] Li et al. PointCNN. NIPS 2018. "simultaneously weight and permute the input features"

ALGORITHM 1: X-Conv Operator

Input : \mathbf{K} , p , \mathbf{P} , \mathbf{F}	
Output: \mathbf{F}_p	\triangleright Features "projected", or "aggregated", into representative point p
1: $\mathbf{P}' \leftarrow \mathbf{P} - p$	\triangleright Move P to local coordinate system of p
2: $\mathbf{F}_{\delta} \leftarrow MLP_{\delta}(\mathbf{P}')$	\triangleright Individually lift each point into C_{δ} dimensional space
3: $\mathbf{F}_* \leftarrow [\mathbf{F}_{\delta}, \mathbf{F}]$	\triangleright Concatenate \mathbf{F}_{δ} and \mathbf{F}, \mathbf{F}_* is a $K \times (C_{\delta} + C_1)$ matrix
4: $\mathcal{X} \leftarrow \tilde{M}LP(\mathbf{\dot{P}}')$	\triangleright Learn the $K \times K \mathcal{X}$ -transformation matrix
5: $\mathbf{F}_{\mathcal{X}} \leftarrow \mathcal{X} \times \mathbf{F}_*$	\triangleright Weight and permute \mathbf{F}_* with the learnt \mathcal{X}
6: $\mathbf{F}_p \leftarrow \text{Conv}(\mathbf{K}, \mathbf{F}_{\mathcal{X}})$	\triangleright Finally, typical convolution between K and F _{\mathcal{X}}

Related Work regular processing

[16] Klokov et al. Kd-Net. ICCV 2017.

Related Work graph-based modeling

15

Related Work graph-based modeling

Related Work convolution kernel

Related Work convolution kernel

Related Work <u>convolution kernel</u>

Related Work <u>Robustness</u>

Robustness to rigid transformation

Normalization:

- ✓ Translation
- ✓ Scale
- x Rotation

Robustness to sampling density

Multi-scale or Input dropout

Monte Carlo integration

Embedding density info.

[22] HERMOSILLA et al. MCCNN. TOG 2018.[23] Wu et al. PointConv. CVPR 2019.

20

Related Work Robustness

128 Cluster Cluster ŝ

[40] Chen et al. ClusterNet. CVPR 2019.

global features

Rigorously Rotation-Invariant (RRI) Representation $\|R\boldsymbol{x}\|_{2}^{2} = \|\boldsymbol{x}\|_{2}^{2} \quad \langle R\boldsymbol{x}, R\boldsymbol{y} \rangle = (R\boldsymbol{x})^{\mathsf{T}}(R\boldsymbol{y}) = \boldsymbol{x}^{\mathsf{T}}\boldsymbol{y} = \langle \boldsymbol{x}, \boldsymbol{y} \rangle$

[24] Li et al. Discrete Rotation Equivariance. ICRA 2019. [25] Cohen et al. Group Equivariant CNN. ICML 2016.

$$\Phi(T_{r_i}x) = T'_{r_i}\Phi(x)$$

[27] Cohen et al. Spherical CNNs. ICLR 2018.

Github: awesome-point-cloud-analysis

CVPR, ICCV, ECCV, SIGGraph / Asia, TOG, NIPS, ICLR, AAAI, MM, ICRA, IROS, 3DV...... arXiv

Keywords

 dat.: dataset
 cls.: classification
 rel.: retrieval
 seg.: segment

 det.: detection
 tra.: tracking
 pos.: pose
 dep.: depth

 reg.: registration
 rec.: reconstruction
 aut.: autonomous driving

 oth.: other, including normal-related, correspondence, mapping, matching, alignment

Statistics: 🔥 code is available & stars >= 100 | 🌟 citation >= 50

CVPR 2018, ~25 CVPR 2019, ~50 ICCV 2019, ?

awesome-point-cloud-analysis 🛏 awesome

- Recent papers (from 2017)
- Datasets

2018

- [CVPR] SPLATNet: Sparse Lattice Networks for Point Cloud Processing. [caffe] [seg.] 🚸
- [CVPR] Attentional ShapeContextNet for Point Cloud Recognition. [cls. seg.]
- [CVPR] Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling. [code] [cls. seg.]
- [CVPR] FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation. [code] [cls.]
- [CVPR] Pointwise Convolutional Neural Networks. [tensorflow] [cls. seg.]
- [CVPR] PU-Net: Point Cloud Upsampling Network. [tensorflow] [rec. oth.] 🚸
- [CVPR] SO-Net: Self-Organizing Network for Point Cloud Analysis. [pytorch] [cls. seg.] 🚸 🜟
- [CVPR] Recurrent Slice Networks for 3D Segmentation of Point Clouds. [pytorch] [seg.]
- [CVPR] 3D Semantic Segmentation with Submanifold Sparse Convolutional Networks. [pytorch] [seg.] 🚸
- [CVPR] Deep Parametric Continuous Convolutional Neural Networks. [seg. aut.]
- [CVPR] PIXOR: Real-time 3D Object Detection from Point Clouds. [pytorch] [det. aut.]
- [CVPR] SGPN: Similarity Group Proposal Network for 3D Point Cloud Instance Segmentation. [tensorflow] [seg.] 🚸
- [CVPR] Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs. [pytorch] [seg.] 🚸
- [CVPR] VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. [tensorflow] [det . | aut .] 🚸 🜟

Outline

Relation-Shape Convolutional Neural Network for Point Cloud Analysis

Yongcheng Liu, Bin Fan, Shiming Xiang, Chunhong Pan

CVPR 2019 Oral & Best paper finalist

Project Page: https://yochengliu.github.io/Relation-Shape-CNN/

RS-CNN Motivation

RS-CNN <u>Method: Relation-Shape Conv</u>

local point subset $P_{sub} \subset \mathbb{R}^3 \longrightarrow$ spherical neighborhood: $x_i + x_j \in \mathcal{N}(x_i)$ $\mathbf{f}_{P_{sub}} = \sigma \left(\mathcal{A}(\{\mathcal{T}(\mathbf{f}_{x_j}), \forall x_j\}) \right)^1, \ d_{ij} < r \ \forall x_j \in \mathcal{N}(x_i) \qquad y = \sigma(\sum \mathbf{W} * \mathbf{X})$ \mathcal{T} : feature transformation \mathcal{A} : feature aggregation

- Permutation invariance: only when A is symmetric and T is shared over each point
- Limitations of CNN: weight is not shared gradient only w.r.t single point implicit $\mathcal{T}(\mathbf{f}_{x_j}) = \mathbf{w}_j \cdot \mathbf{f}_{x_j}$
- Conversion: learn from relation $\mathcal{T}(\mathbf{f}_{x_j}) = \mathbf{w}_{ij} \cdot \mathbf{f}_{x_j} = \mathcal{M}(\mathbf{h}_{ij}) \cdot \mathbf{f}_{x_j}$ • \mathbf{h}_{ij} : predefined geometric priors \rightarrow low-level relation

 $\mathbf{f}_{P_{\text{sub}}} = \sigma \left(\mathcal{A}(\{\mathcal{M}(\mathbf{h}_{ij}) \cdot \mathbf{f}_{x_j}, \forall x_j\}) \right) \quad \mathcal{M} : \text{mapping function(shared MLP)} \rightarrow \text{high-level relation}$

RS-CNN <u>Method</u>

$$\mathbf{f}_{P_{\text{sub}}} = \sigma \big(\mathcal{A}(\{\mathcal{M}(\mathbf{h}_{ij}) \cdot \mathbf{f}_{x_j}, \forall x_j\}) \big)$$

high-level relation encoding + channel raising mapping low-level relation \mathbf{h}_{ij} : (3D Euclidean distance, $x_i - x_j$, x_i , x_j) 10 channels

RS-CNN <u>*RS-Conv: Properties*</u>

$$\mathbf{f}_{P_{\text{sub}}} = \sigma \big(\mathcal{A}(\{\mathcal{M}(\mathbf{h}_{ij}) \cdot \mathbf{f}_{x_j}, \forall x_j\}) \big)$$

- ✓ Permutation invariance
- ✓ Robustness to rigid transformation in Relation Learning, e.g., 3D Euclidean distance
- ✓ Points' interaction

RS-Conv with relation learning is more general and can be applied to model 2D grid spatial relationship.

RS-CNN <u>RS-CNN</u>

Farthest Point Sampling + Sphere Neighborhood + RS-Conv

RS-CNN <u>Shape classification</u>

method	input	#points	acc.
Pointwise-CNN [10]	xyz	1k	86.1
Deep Sets [48]	xyz	1k	87.1
ECC [31]	xyz	1k	87.4
PointNet [24]	xyz	1k	89.2
SCN [44]	xyz	1k	90.0
Kd-Net(depth=10) [16]	xyz	1k	90.6
PointNet++ [26]	xyz	1k	90.7
KCNet [30]	xyz	1k	91.0
MRTNet [3]	xyz	1k	91.2
Spec-GCN [38]	xyz	1k	91.5
PointCNN [21]	xyz	1k	91.7
DGCNN [41]	xyz	1k	92.2
PCNN [1]	XYZ	1k	92.3
Ours	$\mathbf{x}\mathbf{y}\mathbf{z}$	1k	93.6
SO-Net [19]	xyz	2k	90.9
Kd-Net(depth=15) [16]	xyz	32k	91.8
O-CNN [39]	xyz, nor	-	90.6
Spec-GCN [38]	xyz, nor	1k	91.8
PointNet++ [26]	xyz, nor	5k	91.9
SpiderCNN [45]	xyz, nor	5k	92.4
SO-Net [19]	xyz, nor	5k	93.4

method	input	class	instance	air	bag	cap	car	chair	ear	guitar	knife	lamp	laptoj	pmotor	r mug	pistol	rocke	t skate	table
		mIoU	mIoU	plane					phone	e				bike				board	
Kd-Net [16]	4k	77.4	82.3	80.1	74.6	74.3	70.3	88.6	73.5	90.2	87.2	81.0	94.9	57.4	86.7	78.1	51.8	69.9	80.3
PointNet [24]	2k	80.4	83.7	83.4	78.7	82.5	74.9	89.6	73.0	91.5	85.9	80.8	95.3	65.2	93.0	81.2	57.9	72.8	80.6
RS-Net [11]	-	81.4	84.9	82.7	86.4	84.1	78.2	90.4	69.3	91.4	87.0	83.5	95.4	66.0	92.6	81.8	56.1	75.8	82.2
SCN [44]	1k	81.8	84.6	83.8	80.8	83.5	79.3	90.5	69.8	91.7	86.5	82.9	96.0	69.2	93.8	82.5	62.9	74.4	80.8
PCNN [1]	2k	81.8	85.1	82.4	80.1	85.5	79.5	90.8	73.2	91.3	86.0	85.0	95.7	73.2	94.8	83.3	51.0	75.0	81.8
SPLATNet [34]	-	82.0	84.6	81.9	83.9	88.6	79.5	90.1	73.5	91.3	84.7	84.5	96.3	69.7	95.0	81.7	59.2	70.4	81.3
KCNet [30]	2k	82.2	84.7	82.8	81.5	86.4	77.6	90.3	76.8	91.0	87.2	84.5	95.5	69.2	94.4	81.6	60.1	75.2	81.3
DGCNN [41]	2k	82.3	85.1	84.2	83.7	84.4	77.1	90.9	78.5	91.5	87.3	82.9	96.0	67.8	93.3	82.6	59.7	75.5	82.0
Ours	2k	84.0	86.2	83.5	84.8	88.8	79.6	91.2	81.1	91.6	88.4	86.0	96.0	73.7	94.1	83.4	60.5	77.7	83.6
PointNet++ [26]	2k,nor	81.9	85.1	82.4	79.0	87.7	77.3	90.8	71.8	91.0	85.9	83.7	95.3	71.6	94.1	81.3	58.7	76.4	82.6
SyncCNN [47]	mesh	82.0	84.7	81.6	81.7	81.9	75.2	90.2	74.9	93.0	86.1	84.7	95.6	66.7	92.7	81.6	60.6	82.9	82.1
SO-Net [19]	1k,nor	80.8	84.6	81.9	83.5	84.8	78.1	90.8	72.2	90.1	83.6	82.3	95.2	69.3	94.2	80.0	51.6	72.1	82.6
SpiderCNN [45]	2k,nor	82.4	85.3	83.5	81.0	87.2	77.5	90.7	76.8	91.1	87.3	83.3	95.8	70.2	93.5	82.7	59.7	75.8	82.8

class mIoU 1.7↑ instance mIoU 1.1↑

Best results over 10 categories

RS-CNN <u>ShapePart Segmentation</u>

Diverse, confusing shapes

RS-CNN *Normal estimation*

Table 3. Normal	estimation	error	on Model	Net40	dataset.
1	.1	1		•	

	Ours	1k	0.15
	PCNN [1]	1k	0.19
	PointNet++ [1]	1k	0.29
ModelNet40	PointNet [1]	1k	0.47
dataset	method	#points	error

less effective for some intractable shapes, such as spiral stairs and intricate plants

RS-CNN <u>Geometric priors</u>

 $\mathbf{f}_{P_{\text{sub}}} = \sigma \big(\mathcal{A}(\{\mathcal{M}(\mathbf{h}_{ij}) \cdot \mathbf{f}_{x_j}, \forall x_j\}) \big)$

	ху	
-	XZ	
	yz	

n	nodel	low-level relation \mathbf{h}	channels	acc.
	А	(3D-Ed)	1	92.5
	В	$(3D-Ed, x_i - x_j)$	4	93.0
	С	$(3D-Ed, x_i - x_j, x_i, x_j)$	10	93.6
	D	$(3D\text{-}cosd, x_i^{nor}, x_j^{nor})$	7	92.8
	E	$(2\text{D-Ed}, x'_i - x'_j, x'_i, x'_j)$	10	≈ 92.2

low-level relation h	channels	acc.
(XY-Ed, $x_i^{xy} - x_j^{xy}, x_i^{xy}, x_j^{xy}$)	10	92.1
$(\text{XZ-Ed}, x_i^{\text{xz}} - x_j^{\text{xz}}, x_i^{\text{xz}}, x_j^{\text{xz}})$	10	92.1
$(\text{YZ-Ed}, x_i^{\text{yz}} - x_j^{\text{yz}}, x_i^{\text{yz}}, x_j^{\text{yz}})$	10	92.2
fusion of above three views		92.5

RS-CNN <u>Model analysis</u>

Robustness to point permutation and rigid transformation

		method	acc.	perm.	+0.2	-0.2	90°	180°
relation: 3D		PointNet [24]	88.7	88.7	70.8	70.6	42.5	38.6
Euclidean distar	nce	PointNet++ [26]	88.2†	88.2	88.2	88.2	47.9	39.7
	100	Ours	90.3 [†]	90.3	90.3	90.3	90.3	90.3
$\mathbf{f}_{P_{\mathrm{sub}}} = \sigma ig(\mathcal{A}(\{ \mathcal{A}))})))))))))))))})))}))))))$	$\mathcal{M}(\mathbf{h}_{ij})$	$\cdot \mathbf{f}_{x_j}, \forall x_j \}) \Big)$	1 st lay 512 po	ver ints	2 nd layer 128 points	1 st 512	layer points	2 nd layer 128 points
Model complexity						1100	3	1.354
method	#params	#FLOPs/sample	1000			ALC: NO.	Williams.	
PointNet [24]	3.50M	440M	a contraction of		1. N.			-112
PointNet++ [21]	1.48M	1684M	1		at .		War-	
PCNN [21]	8.20M	294 M	X		5		ALP.	1310
Ours	1.41M	295M	~3	-		1	Slat	S

low response

high response

DensePoint: Learning Densely Contextual Representation for Efficient Point Cloud Processing

Yongcheng Liu, Bin Fan, Gaofeng Meng, Jiwen Lu, Shiming Xiang, Chunhong Pan

ICCV 2019

Code: https://github.com/Yochengliu/DensePoint

DensePoint <u>Motivation</u>

Context: potential semantic dependencies between a target pattern and its surroundings

Multi-scale learning – high complexity

- parameters
- FLOPs
- scale limitation
- unintuitive (scale $\leftarrow \rightarrow$ semantic level)

- ✓ Efficient solution using deep learning?
- ✓ Explore its performance on point cloud from various aspects.

DensePoint <u>Method</u>

key idea: <u>multi-level receptive fields</u> + <u>efficient conv on point cloud</u>

dense connections + efficient point convolution

progressively aggregate multi-scale info. in an *organic* manner!

DensePoint Method: efficient PConv

 $\mathbf{f}_{\mathcal{N}(x)} = \rho\big(\{\phi(\mathbf{f}_{x_n}), \,\forall x_n \in \mathcal{N}(x)\}\big)$

enhanced PConv: filter grouping $\mathbf{f}_{\mathcal{N}(x)} = \psi \left(\rho \left(\{ \widehat{\phi}(\mathbf{f}_{x_n}), \, \forall x_n \in \mathcal{N}(x) \} \right) \right)$ $C_i^* k$ VS. $C_i * k/4 + 4k^2$

Ø: single-layer perceptron

DensePoint <u>Method</u>

Farthest Point Sampling + Sphere Neighborhood + ePConv + PPool

+ dense connections

DensePoint <u>Shape classification</u>

ModelNet40 benchmark

Robustness to sampling density and noise

method	input	#points	M40	M10
Pointwise-CNN [12]	pnt	1k	86.1	-
Deep Sets [60]	pnt	1k	87.1	-
ECC [40]	pnt	1k	87.4	90.8
PointNet [31]	pnt	1k	89.2	-
SCN [55]	pnt	1k	90.0	-
Kd-Net(depth=10) [21]	pnt	1k	90.6	93.3
PointNet++ [33]	pnt	1k	90.7	-
MC-Conv [11]	pnt	1k	90.9	-
KCNet [39]	pnt	1k	91.0	94.4
MRTNet [4]	pnt	1k	91.2	-
SpecGCN [49]	pnt	1k	91.5	-
DGCNN [52]	pnt	1k	92.2	-
PointCNN [26]	pnt	1k	92.2	-
PCNN [1]	pnt	1k	92.3	94.9
Ours	pnt	1k	93.2	96.6
SO-Net [24]	pnt	2k	90.9	94.1
Kd-Net(depth=15) [21]	pnt	32k	91.8	94.0
O-CNN [50]	pnt, nor	-	90.6	-
Spec-GCN [49]	pnt, nor	1k	91.8	-
PointNet++ [33]	pnt, nor	5k	91.9	-
SpiderCNN [56]	pnt, nor	5k	92.4	-
SO-Net [24]	pnt, nor	5k	93.4	95.7

DensePoint <u>Shape retrieval</u>

			input	met	hod			#pc	oints/vi	ews	M40	M10
			Points	Poir	ntNet [10]			1k		70.5	-
ModelNet40) benchma	ark	1 011105	Ou	rs				1k		88.5	93.2
				GV	CNN [3]			12		85.7	-
			Imagaa	Trip	olet-cer	nter [10]		12		88.0	-
			images	' PAN	NORA	MA-EN	JN [<mark>38</mark>]		-		86.3	93.3
				Seq	Views	[7]			12		89.1	89.5
Quart			Top-10 r	etrieved	CAD	models						
Query		0	10p-101		CAD	models						
The second secon	80	8		Y I		C	P		3	Po	intNet	
vase	20	8	Õ	8	8	8	Ö	ð	6	De	nsePo	oint
piano			T T dest		9 11			橋				
stool	I I	100	J	7			T T					

DensePoint <u>ShapePart Segmentation & normal estimation</u>

DensePoint *model complexity*

method	#params	#FLOPs/sample	acc.(%)
PointNet [31]	3.50M	440M	89.2
PointNet++ [26]	1.48M	1684M	90.7
DGCNN [26]	1.84M	2767M	92.2
SpecGCN [26]	2.05M	1112M	91.5
KCNet [39]	0.90M	-	91.0
PCNN [26]	8.20M	294M	92.3
PointCNN [26]	0.60M	1581M	92.2
Ours $(k = 12, L = 11)$	0.56M	294M	92.1
Ours $(k = 24, L = 11)$	0.67M	651M	93.2
Ours $(k = 24, L = 6)$	0.53M	148M	92.1

1024 points

method	#points	Time (ms)		Memory (GB)	
		training	test	training	test
PointNet [31]	1024	55	22	1.318	0.469
PointNet++ [33]	1024	195	47	8.311	2.305
DGCNN [52]	1024	300	68	4.323	1.235
PointCNN [26]	1024	55	38	2.501	1.493
Ours ($k=24$, $L=11$)	1024	21	10	3.745	1.228
Ours (k=24, L=6)	1024	10	5	1.468	0.886
Ours ($k=24$, $L=11$)	4096	21	10	7.503	1.767
Ours ($k=24, L=6$)	4096	10	5	2.417	1.638
Ours ($k=24, L=11$)	8192	21	10	14.521	3.027
Ours ($k=24, L=6$)	8192	10	5	4.335	2.776

batchsize = 16

Titan Xp

Outline

Brief review

. . .

- PointNet family
- regular processing
- graph-based modeling
- convolution kernel

attention/self-attention

RS-CNN & DensePoint

- relatoin modeling
 - > geometry & deep learning
- contextual learning & efficiency
 - visual recognition & robust learning

Summary & Outlook

Advantages

- ✓ raw sensor data, e.g., Lidar
- \checkmark simple representation: N * (x, y, z, color, normal...)
- ✓ better 3D shape capturing

Why emerging?

- ✓ autonomous driving
- ✓ AR & VR
- ✓ robot manipulation
- ✓ Geomatics
- ✓ 3D face & medical

- efficiency in large-scale point cloud
- multi-sensor/multi-modal
- reconstruction
- high-precision
- robustness
- geometric DL, segmentation (instance), detection, completion, registration...
- ✓ capsule, GAN, one-shot/zero-shot, meta-learning, NAS
- ✓ AI-assisted shape design in 3D game and animation, etc.
- ✓ <u>open problem, flexible</u>

Welcome to the world of 3D point cloud!

- [1] Wu et al. 3D ShapeNets: A Deep Representation for Volumetric Shapes. CVPR 2015.
- [2] Su et al. Multi-view Convolutional Neural Networks for 3D Shape Recognition. ICCV 2015.
- [3] Mo et al. PartNet: A Large-scale Benchmark for Fine-grained and Hierarchical Part-level 3D Object Understanding. CVPR 2019.
- [4] Armeni et al. 3d semantic parsing of large-scale indoor spaces. CVPR 2016.
- [5] Hackel et al. Semantic3d. net: A new large-scale point cloud classification benchmark. ISPRS 2017.
- [6] Dai et al. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR 2017.
- [7] Zhou et al. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. CVPR 2018.
- [8] Su et al. SPLATNet: Sparse Lattice Networks for Point Cloud Processing. CVPR 2018.
- [9] Kiefel et al. Permutohedral Lattice CNNs. ICLR 2015.
- [10] Jampani et al. Learning sparse high dimensional filters: Image filtering, dense CRFs and bilateral neural networks. CVPR 2016.
- [11] Atzmon et al. Point Convolutional Neural Networks by Extension Operators. SIGGRAPH 2018.
- [12] Li et al. PointCNN: Convolution On X-Transformed Points. NIPS 2018.
- [13] Jiang et al. PointSIFT: A SIFT-like Network Module for 3D Point Cloud Semantic Segmentation. arXiv 2018. 48

[14] Li et al. SO-Net: Self-Organizing Network for Point Cloud Analysis. CVPR 2018.

[15] Hua et al. Pointwise Convolutional Neural Networks. CVPR 2018.

[16] Klokov et al. Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models. ICCV 2017.

[17] Rethage et al. Fully-Convolutional Point Networks for Large-Scale Point Clouds. ECCV 2017.

[18] Qi et al. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. CVPR 2017.

[19] Qi et al. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. NIPS 2017.

[20] Qi et al. Frustum PointNets for 3D Object Detection from RGB-D Data. CVPR 2018.

[21] Liu et al. FlowNet3D: Learning Scene Flow in 3D Point Clouds. CVPR 2019.

[22] HERMOSILLA et al. Monte Carlo Convolution for Learning on Non-Uniformly Sampled Point Clouds. TOG 2018.

[23] Wu et al. PointConv: Deep Convolutional Networks on 3D Point Clouds. CVPR 2019.

[24] Li et al. Discrete Rotation Equivariance for Point Cloud Recognition. ICRA 2019.

[25] Cohen et al. Group Equivariant Convolutional Networks. ICML 2016.

[26] Esteves et al. Learning SO(3) Equivariant Representations with Spherical CNNs. ECCV 2018.

[27] Cohen et al. Spherical CNNs. ICLR 2018.

[28] Rao et al. Spherical Fractal Convolution Neural Networks for Point Cloud Recognition. CVPR 2019.

[29] Wang et al. Dynamic Graph CNN for Learning on Point Clouds. TOG 2019.

[30] Te et al. RGCNN: Regularized Graph CNN for Point Cloud Segmentation. MM 2018.

[31] Valsesia et al. Learning Localized Generative Models for 3D Point Clouds via Graph Convolution. ICLR 2019.

[32] Wang et al. Local Spectral Graph Convolution for Point Set Feature Learning. ECCV 2018.

[33] Landrieu et al. Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs. CVPR 2018.

[34] Li et al. Gated graph sequence neural networks. ICLR 2016.

[35] Simonovsky et al. Dynamic edge-conditioned filters in convolutional neural networks on graphs. CVPR 2017.

[36] Landrieu et al. Point Cloud Oversegmentation with Graph-Structured Deep Metric Learning. CVPR 2019.

[37] Li et al. Can GCNs Go as Deep as CNNs. ICCV 2019.

[38] Shen et al. Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling. CVPR 2018.

[39] Thomas et al. KPConv: Flexible and Deformable Convolution for Point Clouds. arXiv 2019.

[40] Chen et al. ClusterNet: Deep Hierarchical Cluster Network with Rigorously Rotation-Invariant Representation for

Point Cloud Analysis. CVPR 2019.

[41] Lan et al. Modeling Local Geometric Structure of 3D Point Clouds using Geo-CNN. CVPR 2019.

[42] Tatarchenko et al. Tangent Convolutions for Dense Prediction in 3D. CVPR 2018.

[43] Komarichev et al. A-CNN: Annularly Convolutional Neural Networks on Point Clouds. CVPR 2019.

[44] Zhao et al. PointWeb: Enhancing Local Neighborhood Features for Point Cloud Processing. CVPR 2019.

Thanks for your attention !

yongcheng.liu@nlpr.ia.ac.cn