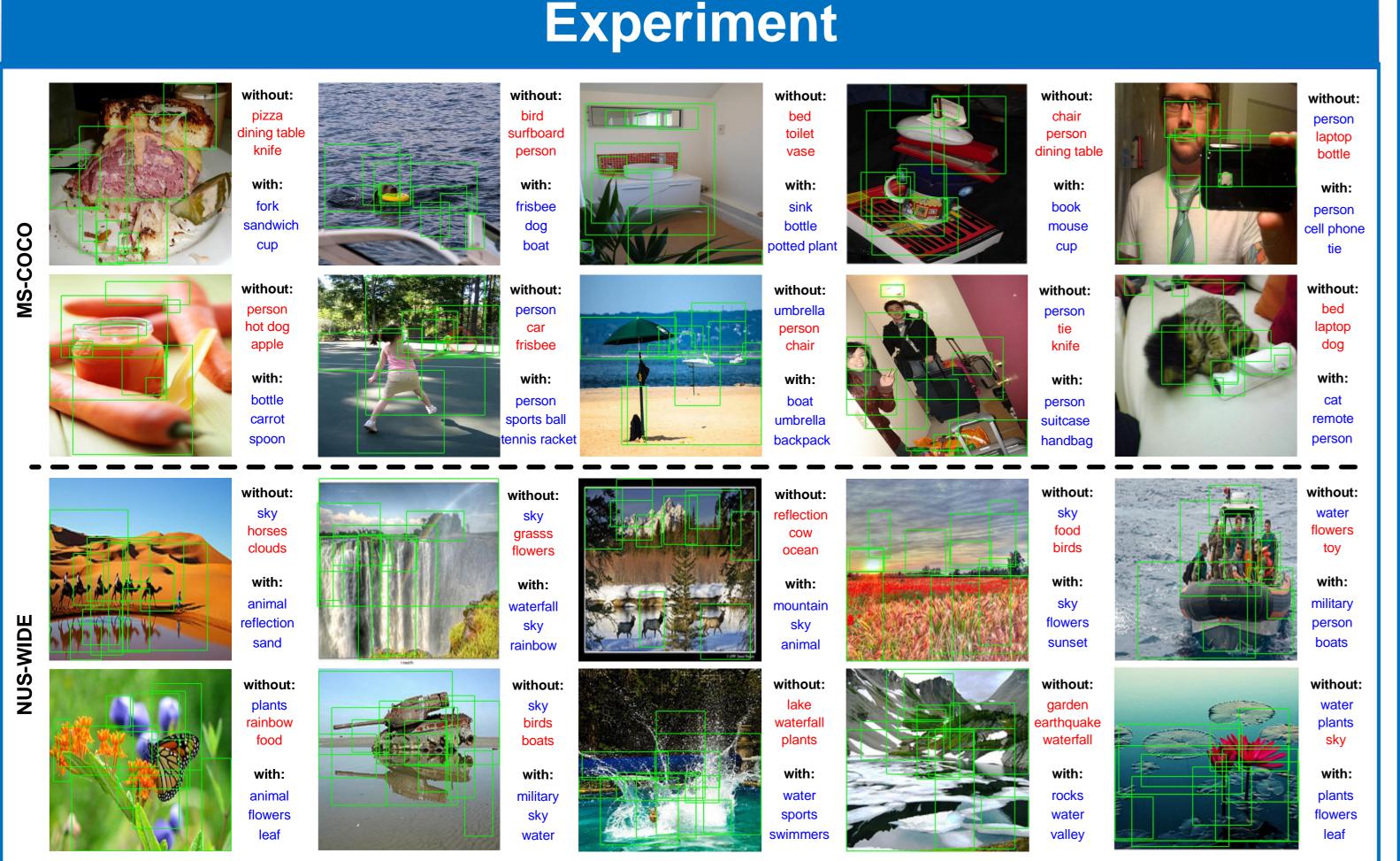


Multi-Label Image Classification via Knowledge Distillation from Weakly-Supervised Detection

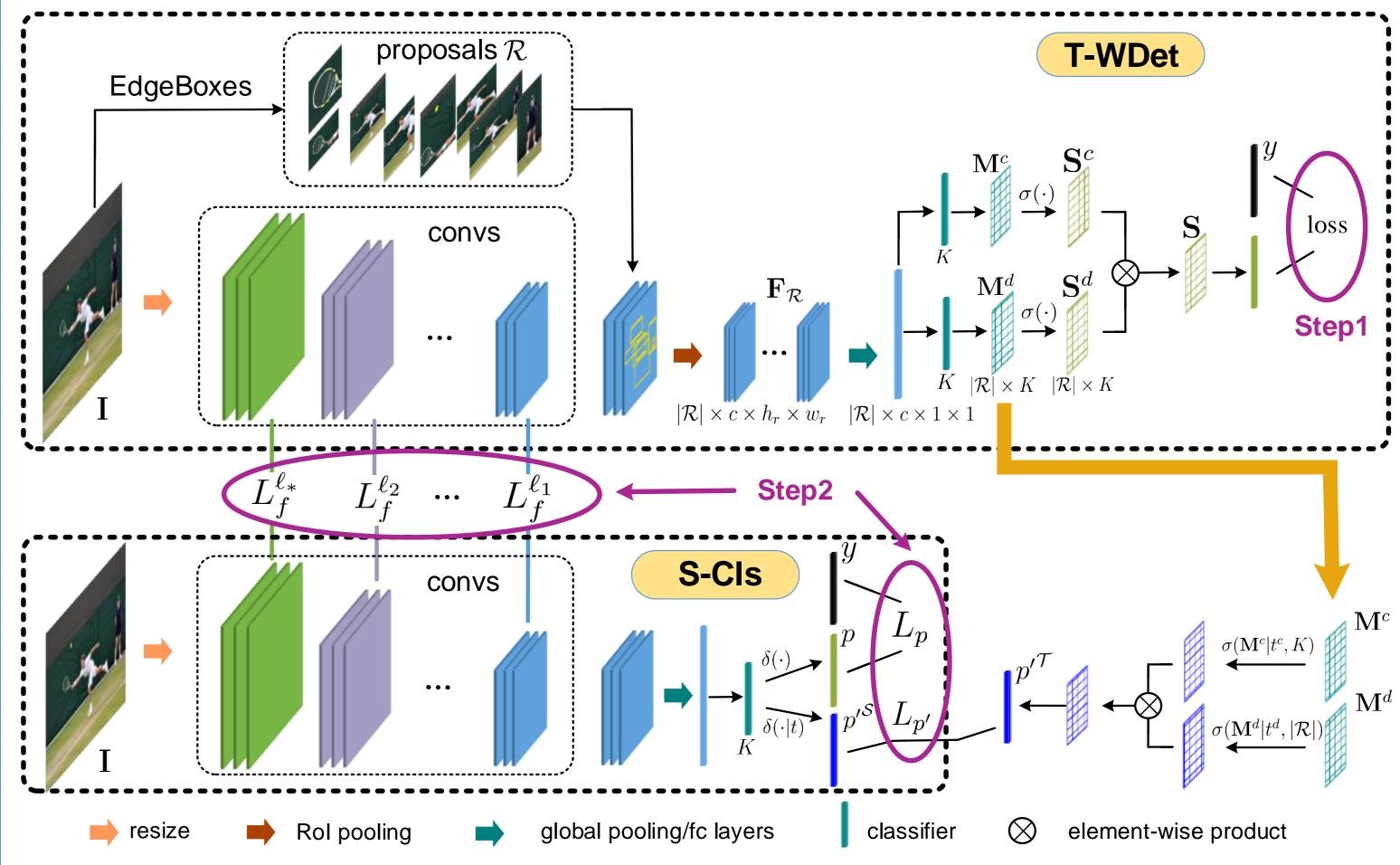
Yongcheng Liu^{1,2}, Lu Sheng³, Jing Shao⁴, Junjie Yan⁴, Shiming Xiang^{1,2}, Chunhong Pan¹ ¹National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences ²School of Artificial Intelligence, University of Chinese Academy of Sciences ³CUHK-SenseTime Joint Lab, The Chinese University of Hong Kong ⁴SenseTime Research

Motivation			Contribution
<section-header></section-header>	annotations: person cat bicycle	<section-header></section-header>	 A novel deep MLIC framework equipped with <i>cross-task knowledge distillation</i>, <i>i.e.</i>, distilling the unique knowledge from WSD into MLIC. The first work that applies <i>knowledge distillation between two different tasks</i>, <i>i.e.</i>, weakly-supervised detection and multi-label image classification. Extensive experiments on two challenging large-scale datasets (MS-COCO and NUS-WIDE) demonstrate the effectiveness of the proposed framework.

- The Multi-Label Image Classification (MLIC) model can not work well due to poor localization for multiple semantic instances.
- The detections by Weakly-Supervised Detection (WSD) model tend to locate the semantic regions which are informative for classifying the target object, although they may not preserve object boundaries well.
- The localizations of WSD could provide object-relevant informative regions, the imagelevel predictions of WSD could capture the latent class dependencies, both can facilitate the MLIC task.



Overall Framework



A novel deep framework to boost MLIC by *distilling the unique knowledge* from WSD into classification with only image-level annotations. The WSD is taken as the **teacher** (**T-WDet**) while the MLIC is the **student** (**S-CIs**).

Step 1: Weakly-Supervised Detection

MS-COCO: The image in 1st column of the 1st row. After distillation, even the *highly occluded objects* like "fork" and "cup" can be well recognized.

NUS-WIDE: The image in 2nd column of the 1st row. After distillation, *motion and event concepts* like "waterfall" and "rainbow" are recognized.

Table 1: Quantitative comparison	(%) on MS-COCO.
----------------------------------	-----------------

Method	All			Top-3	
Methou	mAP	F1-C	F1-O	F1-C	F1-0
CNN-RNN [32]	-	-	-	60.4	67.8
CNN-LSEP [19]	-	62.9	68.3	-	-
CNN-SREL-RNN [21]	-	63.4	72.5	-	-
RMAM(512+10crop) [33]	72.2	-	-	<u>66.5</u>	71.3
RARLF(512+10crop) [5]	-	-	-	65.6	70.5
MIML-FCN-BB [39]	66.2	-	-	-	-
MCG-CNN-LSTM [43]	64.4	-	-	58.1	61.3
RLSD [43]	68.2	-	-	62.0	66.5
Ours-S-Cls (w/o)	70.9	63.6	67.0	60.7	66.7
Distillation [12]	71.3	64.7	69.3	61.5	67.6
FitNets [23]	<u>72.5</u>	<u>65.2</u>	70.9	62.3	68.3
Attention transfer [42]	71.4	64.6	69.8	61.6	67.8
Ours-S-Cls (w/)	74.6	69.2	74.0	66.8	72.7

Method	All			Top-3	
wiethou	mAP	F1-C	F1-O	F1-C	F1-O
CNN-RNN [32]	-	-	-	34.7	55.2
Tag-Neighbors [15]	52.8	-	-	45.2	62.5
CNN-LSEP [19]	-	52.9	70.8	-	-
CNN-SREL-RNN [21]	-	52.8	71.0	-	-
MCG-CNN-LSTM [43]	52.4	-	-	46.1	59.9
RLSD [43]	54.1	-	-	46.9	60.3
KCCA [30]	52.2	-	-	-	-
Ours-S-Cls (w/o)	55.6	52.0	67.2	47.5	64.8
Distillation [12]	57.2	54.3	69.5	50.3	67.5
FitNets [23]	57.4	54.9	70.4	51.4	68.6
Attention transfer[42]	<u>57.6</u>	55.2	70.3	<u>51.7</u>	<u>68.8</u>
Ours-S-Cls (w/)	60.1	58.7	73.7	53.8	71.1

Table 2: Quantitative comparison (%) on NUS-WIDE.

We first develop a WSD model with image-level annotations (WSDDN in this paper).

Step 2: Cross-Task Knowledge Distillation (WSD is frozen)

Stage 1: Feature-level transfer. Distilling the object-relevant features from Rols.

Minimize
$$\sum_{\ell} L_f^{\ell}(\mathbf{w}_{conv}^{\mathcal{S}})$$

only update convs' params

 $\begin{cases} L_f(\mathbf{w}_{\text{conv}}^{\mathcal{S}}) = \frac{1}{2N} \sum_n \frac{1}{|\mathcal{R}'_n|} \|\mathbf{F}_{\mathcal{R}'_n}^{\mathcal{T}} \ominus \mathbf{F}_{\mathcal{R}'_n}^{\mathcal{S}} \|_2^2 \\ \mathbf{F}_{\mathcal{R}'_n}^{\mathcal{T}} = C_{R \in \mathcal{R}'_n} [s'_R \odot \phi_{\text{RoI}}(\mathbf{F}_{\text{conv}}^{\mathcal{T}}; R)], \\ \mathbf{F}_{\mathcal{R}'_n}^{\mathcal{S}} = C_{R \in \mathcal{R}'_n} [s'_R \odot \phi_{\text{RoI}}(\Psi(\mathbf{F}_{\text{conv}}^{\mathcal{S}}) | \mathbf{w}_{\text{conv}}^{\mathcal{S}}; R)] \end{cases}$

Stage 2: Prediction-level transfer. Distilling the class dependencies from image-level predictions of WSD.

Minimize $L_p(\mathbf{w}^{\mathcal{S}}) + \lambda L_{p'}(\mathbf{w}^{\mathcal{S}})$

update all params

 $L_p(\mathbf{w}^{\mathcal{S}}) = -\frac{1}{N} \sum_n [y \log p + (1-y) \log(1-p)]$ $L_{p'}(\mathbf{w}^{\mathcal{S}}) = \frac{1}{2N} \sum_{n} \|p'^{\mathcal{T}} - p'^{\mathcal{S}}(\mathbf{w}^{\mathcal{S}})\|_{2}^{2}$

Advantages:

- After cross-task distillation, the MLIC model can be improved significantly.
- It is efficient as the WSD model can be safely discarded in the test phase.

Ablation Study

· · · · · ·	
	ls (w/)
	74.6 0.1

Table 4:	Compor	nent-wise	ablation	stu

Method	mAP	
Baseline (Sigmoid-Logistic)	70.9	
+Distillation [12]	71.3	
+Class-aware distillation		
+NMS proposals transfer+Class-aware transfer		
+RoI-aware transfer+Class-aware transfer	74.6	

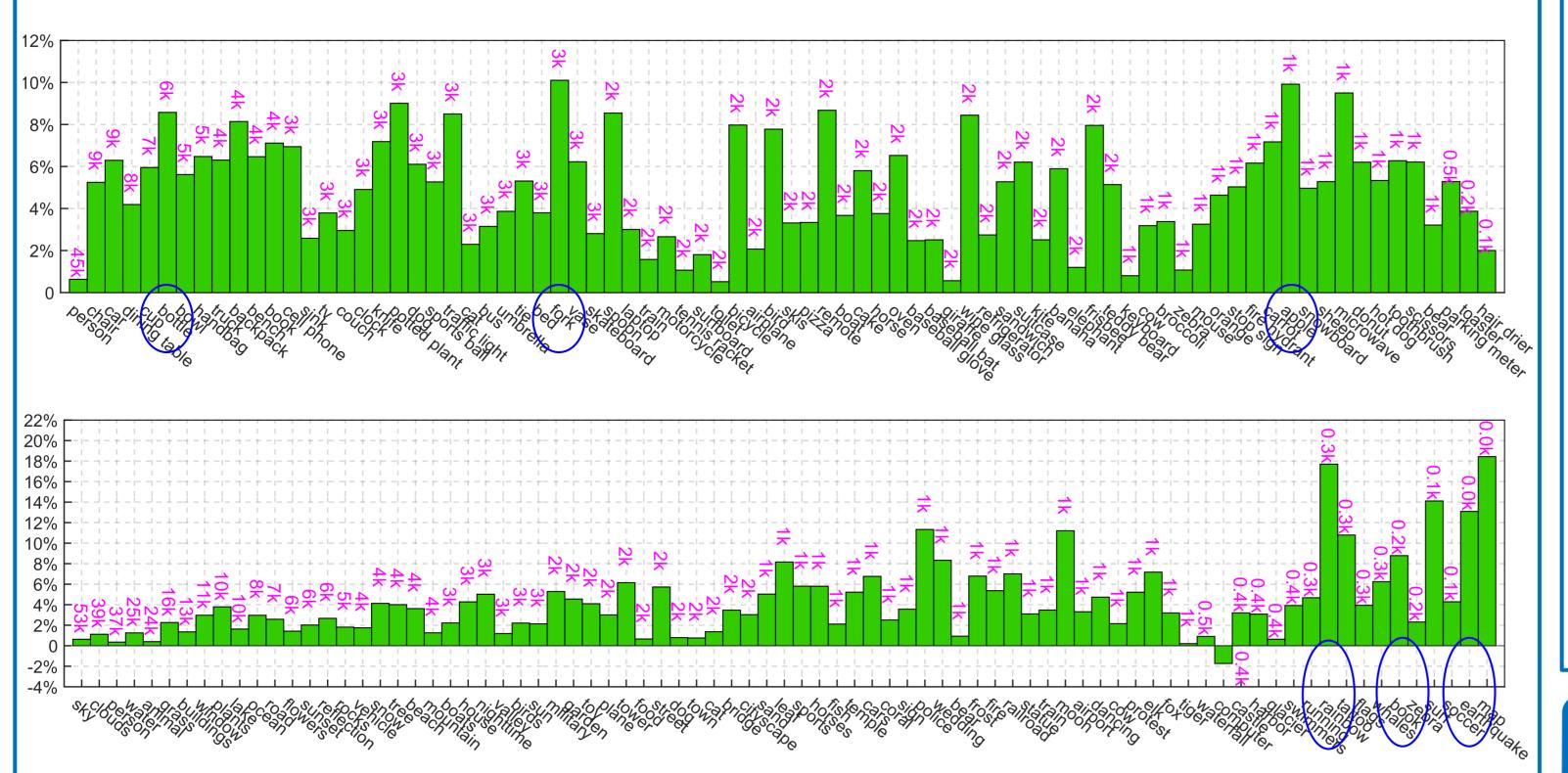


Figure 4: The improvements over each class on MS-COCO (upper) and NUS-WIDE (lower) after knowledge distillation. "*k" indicates the number (divided by 1000) of images including this class.

- The improvements are also considerable even when the classes are very *imbalanced*.
- The framework are robust to the object's size and the label's type.
 - On MS-COCO, small objects like "bottle", "fork", "apple" and so on, which may be difficult for the classification model to pay attention, are also improved a lot.
 - On NUS-WIDE, scenes (e.g., "rainbow"), events (e.g., "earthquake") and objects (e.g., "book") are all improved considerably.

- Table3:
 - ✓ the MLIC model not only obtains global information learned from annotations,
 - ✓ but also perceives the local object-relevant regions as complementary cues distilled from the WSD model,
 - ✓ thus it could surpass the teacher (WSD) on NUS-WIDE.
- Table 5: Region proposals from EdgeBoxes and Faster-RCNN.

Method	mAP
Baseline (Sigmoid-Logistic)	70.9
T-WDet (EdgeBoxes [47])	78.6
S-Cls	74.6
T-WDet (Faster RCNN [22])	81.1
S-Cls	76.3

Table5:

- ✓ EdgeBoxes: unsupervised
- ✓ Faster-RCNN: supervised
- $\checkmark~74.6$ vs 76.3, the gap is not obvious

Information

Contact information: yongcheng.liu@nlpr.ia.ac.cn (Yongcheng Liu) shaojing@sensetime.com (Jing Shao)