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Motivation

 The Multi-Label Image Classification (MLIC) model can not work well due to poor  

localization for multiple semantic instances.

 The detections by Weakly-Supervised Detection (WSD) model tend to locate the 

semantic regions which are informative for classifying the target object, although they 

may not preserve object boundaries well.

 The localizations of WSD could provide object-relevant informative regions, the image-

level predictions of WSD could capture the latent class dependencies, both can facilitate 

the MLIC task.
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Step1

Step2

A novel deep framework to boost MLIC by distilling the unique knowledge from WSD into 

classification with only image-level annotations. The WSD is taken as the teacher (T-WDet) 

while the MLIC is the student (S-Cls).

Step 1: Weakly-Supervised Detection

We first develop a WSD model with image-level annotations (WSDDN in this paper).

Step 2:  Cross-Task Knowledge Distillation (WSD is frozen)

Stage 1: Feature-level transfer. Distilling the object-relevant features from RoIs.

Minimize

only update convs’ params

Stage 2: Prediction-level transfer. Distilling the class dependencies from image-level  

predictions of WSD.

Minimize

update all params

 After cross-task distillation, the MLIC model can be improved significantly.

 It is efficient as the WSD model can be safely discarded in the test phase.
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Ablation Study

Contribution
 A novel deep MLIC framework equipped with cross-task knowledge distillation, i.e., 

distilling the unique knowledge from WSD into MLIC.

 The first work that applies knowledge distillation between two different tasks, i.e., weakly-

supervised detection and multi-label image classification.

 Extensive experiments on two challenging large-scale datasets (MS-COCO and NUS-

WIDE) demonstrate the effectiveness of the proposed framework.

MS-COCO: The image in 1st column of the 1st row. After distillation, even the highly 

occluded objects like “fork” and “cup” can be well recognized.

NUS-WIDE:   The image in 2nd column of the 1st row. After distillation, motion and event 

concepts like “waterfall” and “rainbow” are recognized.

Table 1: Quantitative comparison (%) on MS-COCO. Table 2: Quantitative comparison (%) on NUS-WIDE.

Figure 4: The improvements over each class on MS-COCO (upper) and NUS-WIDE (lower) after knowledge 

distillation. “*k” indicates the number (divided by 1000) of images including this class.

 The improvements are also considerable even when the classes are very imbalanced.

 The framework are robust to the object’s size and the label’s type.

 On MS-COCO, small objects like “bottle”, “fork”, “apple” and so on, which may be 

difficult for the classification model to pay attention, are also improved a lot.

 On NUS-WIDE, scenes (e.g., “rainbow”), events (e.g., “earthquake”) and objects (e.g., 

“book”) are all improved considerably.

Table 3: Overall ablation study.

Table 4: Component-wise ablation study.

 the MLIC model not only obtains global information learned from annotations,

 but also perceives the local object-relevant regions as complementary cues distilled 

from the WSD model,

 thus it could surpass the teacher (WSD) on NUS-WIDE.

Table3:

Table 5: Region proposals from EdgeBoxes and Faster-RCNN.

Table5:

 EdgeBoxes: unsupervised

 Faster-RCNN: supervised

 74.6 vs 76.3, the gap is not obvious
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